精英家教网 > 初中数学 > 题目详情

【题目】宿州市高新区某电子电路板厂到安徽大学从2018年应届毕业生中招聘公司职员,对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试或成果认定,三项的得分满分都为100分,三项的分数分别按532的比例记入每人的最后总分,有4位应聘者的得分如下表所示.

项目

专业知识

英语水平

参加社会实践与

社团活动等

85

85

90

85

85

70

80

90

70

90

90

50

(1)分别算出4位应聘者的总分;

(2)表中四人专业知识的平均分为85分,方差为12.5,四人英语水平的平均分为87.5分,方差为6.25,请你求出四人参加社会实践与社团活动等的平均分及方差;

(3)分析(1)和(2)中的有关数据,你对大学生应聘者有何建议?

【答案】(1)86,82,81,82;(2)见解析;(3)见解析.

【解析】

(1)根据加权平均数的计算公式列出算式,再进行计算即可;
(2)根据平均数的计算公式先算出平均数,再根据方差公式进行计算即可;
(3)根据(1)(2)得出的结论和实际情况分别写出合理的建议即可.

(1)应聘者A总分为85×50%+85×30%+90×20%=86分;

应聘者B总分为85×50%+85×30%+70×20%=82分;

应聘者C总分为80×50%+90×30%+70×20%=81分;

应聘者D总分为90×50%+90×30%+50×20%=82分;


(2)4位应聘者的专业知识测试的平均分数=(85+85+80+90)÷4=85分,

方差为:S21= ×[(8585)2+(8585)2+(8085)2+(9085)2]=12.5,

4位应聘者的英语水平测试的平均分数=(85+85+90+90)÷4=87.5分,

方差为:S22= ×2.52×4=6.25.

4位应聘者参加社会实践与社团活动等的平均分数为=(90+70+70+50)÷4=70分,

方差为:S23= [(9070)2+(7070)2+(7070)2+(5070)2]=200;


(3)对于应聘者的专业知识、英语水平的差距不大,但参加社会实践与社团活动等方面的差距较大,影响学生的最后成绩,将影响学生就业。学生不仅注重自己的文化知识的学习,更应注重社会实践与社团活动的开展,从而促进学生综合素质的提升。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,已知点A(8,0)和点B(0,6),点C是AB的中点,点P在折线AOB上,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,己知函数y=﹣x+4的图象与坐标轴的交点分别为点A、B,点C与点B关于x轴对称,动点P、Q分别在线段BC、AB上(点P不与点B、C重合).且APQ=ABO

(1)点A的坐标为 ,AC的长为

(2)判断BPQCAP的大小关系,并说明理由;

(3)当APQ为等腰三角形时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.

小聪把△ABE绕点A逆时针旋转90°至△ADG,通过证明△AEF≌△AGF;从而发现并证明了EF=BE+FD.
(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,∠EAF=45°,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;

(2)如图3,如图,∠BAC=90°,AB=AC,点E、F在边BC上,且∠EAF=45°,若BE=3,EF=5,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.

(1)求直线AB的解析式.

(2)求OAC的面积.

(3)当OMC的面积是OAC的面积的时,求出这时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(背景知识)

数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴我们发现有许多重要的规律:

例如,若数轴上点、点表示的数分别为,则两点之间的距离,线段的中点表示的数为

(问题情境)

在数轴上,点表示的数为-20,点表示的数为10,动点从点出发沿数轴正方向运动,同时,动点也从点出发沿数轴负方向运动,已知运动到4秒钟时,两点相遇,且动点运动的速度之比是(速度单位:单位长度/秒).

备用图

(综合运用)

1)点的运动速度为______单位长度/秒,点的运动速度为______单位长度/秒;

2)当时,求运动时间;

3)若点在相遇后继续以原来的速度在数轴上运动,但运动的方向不限,我们发现:随着动点的运动,线段的中点也随着运动.问点能否与原点重合?若能,求出从相遇起经过的运动时间,并直接写出点的运动方向和运动速度;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面内的两条直线有相交和平行两种位置关系.

1)如图1,若ABCD,点PABCD内部,B=50°D=30°,求BPD

2)如图2,将点P移到ABCD外部,则BPDBD之间有何数量关系?(不需证明)

3)如图3,写出BPDBDBQD之间的数量关系?请证明你的结论.

4)如图4,求出A+B+C+D+E+F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1(注:与图2完全相同),二次函数y= x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.

(1)求该二次函数的解析式;
(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);
(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2=(1+2,善于思考的小明进行了以下探索:

a+b=(m+n2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn

∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+b的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

(1)当a、b、m、n均为正整数时,若a+b=(m+n2,用含m、n的式子分别表示a、b,得a=   ,b=   

(2)试着把7+4化成一个完全平方式.

(3)若a是216的立方根,b是16的平方根,试计算:

查看答案和解析>>

同步练习册答案