精英家教网 > 初中数学 > 题目详情

【题目】如图1(注:与图2完全相同),二次函数y= x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.

(1)求该二次函数的解析式;
(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);
(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).

【答案】
(1)

解:∵二次函数y= x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),

解得:

∴y= x2 x﹣4


(2)

解:过点D作DM⊥y轴于点M,

∵y= x2 x﹣4= (x﹣1)2

∴点D(1,﹣ )、点C(0,﹣4),

则SACD=S梯形AOMD﹣SCDM﹣SAOC

= ×(1+3)× ×( ﹣4)×1﹣ ×3×4

=4


(3)

解:四边形APEQ为菱形,E点坐标为(﹣ ,﹣ ).理由如下

如图2,E点关于PQ与A点对称,过点Q作,QF⊥AP于F,

∵AP=AQ=t,AP=EP,AQ=EQ

∴AP=AQ=QE=EP,

∴四边形AQEP为菱形,

∵FQ∥OC,

= =

= =

∴AF= t,FQ= t

∴Q(3﹣ t,﹣ t),

∵EQ=AP=t,

∴E(3﹣ t﹣t,﹣ t),

∵E在二次函数y= x2 x﹣4上,

∴﹣ t= (3﹣ t)2 (3﹣ t)﹣4,

∴t= ,或t=0(与A重合,舍去),

∴E(﹣ ,﹣


【解析】(1)将A,B点坐标代入函数y= x2+bx+c中,求得b、c,进而可求解析式;(2)由解析式先求得点D、C坐标,再根据SACD=S梯形AOMD﹣SCDM﹣SAOC , 列式计算即可;(3)注意到P,Q运动速度相同,则△APQ运动时都为等腰三角形,又由A、E对称,则AP=EP,AQ=EQ,易得四边形四边都相等,即菱形.利用菱形对边平行且相等的性质可用t表示E点坐标,又E在二次函数的图象上,所以代入即可求t,进而E可表示.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们把横 、纵坐标都是整数的点叫做整点.已知点

A04),点B轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是 ;当点B的横坐标为4nn为正整数)时,m= (用含n的代数式表示.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】宿州市高新区某电子电路板厂到安徽大学从2018年应届毕业生中招聘公司职员,对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试或成果认定,三项的得分满分都为100分,三项的分数分别按532的比例记入每人的最后总分,有4位应聘者的得分如下表所示.

项目

专业知识

英语水平

参加社会实践与

社团活动等

85

85

90

85

85

70

80

90

70

90

90

50

(1)分别算出4位应聘者的总分;

(2)表中四人专业知识的平均分为85分,方差为12.5,四人英语水平的平均分为87.5分,方差为6.25,请你求出四人参加社会实践与社团活动等的平均分及方差;

(3)分析(1)和(2)中的有关数据,你对大学生应聘者有何建议?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝.如图,他在A处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为45°.已知点A,B,C在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?(风筝线AD,BD均为线段, ≈1.414, ≈1.732,最后结果精确到1米).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB,CD相交于点O,OEAB于O,若BOD=40°,则不正确的结论是( )

A.AOC=40° B.COE=130° C.EOD=40° D.BOE=90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD 相交于点O,∠AOD=3BOD+20°.

(1)求∠BOD的度数;

(2)O为端点引射线OE,OF ,射线OE平分∠BOD,且∠EOF= 90°,求∠BOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点为P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4、P5、P6,…,则点P2018的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题:①对顶角相等;②同位角相等,两直线平行;③若|a|=|b|,则a=b;④若x=2,则2|x|-1=3.以上命题是真命题的有(   ).

A. ①②③④ B. ①④ C. ②④ D. ①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两组邻边相等的四边形叫做筝形”,如图四边形ABCD是一个筝形其中 AB=CB,AD=CD,詹姆斯在探究筝形的性质时,得到如下结论 ACBD;AOCOAC;ABD≌△CBD;④四边形ABCD的面积=ACBD,其中,正确的结论有_____.

查看答案和解析>>

同步练习册答案