【题目】如图,已知抛物线分别交x轴、y轴于点A(2,0)、B(0,4),点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.
(1)若.
①求抛物线的解析式;
②当线段PD的长度最大时,求点P的坐标;
(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.
【答案】(1) ①y=-2x2+2x+4;②P的坐标是(1,2); (2)见解析.
【解析】
(1)①把A、B的坐标代入抛物线解析式,由a+b=0,解方程组即可得出结论;
②设直线AB的解析式为,把A的坐标代入即可求出k的值,从而得到直线AB的解析式.设P点坐标为(m,﹣2m+4),则D(m,-2m2+2m+4),可表示出PD的长,利用二次函数的性质即可得出结论;
(2)如图2,利用勾股定理计算出AB的长,再求出P的坐标,则可计算出PB的长,接着表示出抛物线解析式为y=ax2﹣2(a+1)x+4,则可用a表示出点D坐标为(1,2﹣a),所以PD=﹣a,由于∠DPB=∠OBA,根据相似三角形的判定方法,当时,△PDB∽△BOA,即;当时,△PDB∽△BAO,即,然后解方程分别求出a的值,从而得到对应的抛物线的解析式.
(1)①把A(2,0)、B(0,4)代入得:.
∵a+b=0,∴
∴,∴抛物线的解析式为y=-2x2+2x+4;
②设直线AB的解析式为,则,∴,∴直线AB的解析式为.
设P点坐标为(m,﹣2m+4),则D(m,-2m2+2m+4),∴PD=﹣2m2+2m+4﹣(﹣2m+4)=﹣2m2+4m,∴当时,线段PD的长度最大,此时点P的坐标是(1,2).
(2)存在.
如图2,OB=4,OA=2,则AB==2.
当x=1时,y=﹣2x+4=2,则P(1,2),∴PB==.
把A(2,0)代入y=ax2+bx+4得4a+2b+4=0,解得:b=-2a-2,∴抛物线的解析式为y=ax2-2(a+1)x+4.
当x=1时,y=ax2-2(a+1)x+4=a-2a-2+4=2-a,则D(1,2-a),∴PD=2-a-2=﹣a.
∵DC∥OB,∴∠DPB=∠OBA.
当时,△PDB∽△BOA,即,解得:a=-2,此时抛物线解析式为y=-2x2+2x+4;
当时,△PDB∽△BAO,即,解得:a=-,此时抛物线解析式为y=-x2+3x+4.
综上所述:满足条件的抛物线的解析式为y=﹣2x2+2x+4或y=-x2+3x+4.
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2﹣2x﹣8.
(1)用配方法把y=x2﹣2x﹣8化为y=(x﹣h)2+k形式;
(2)并指出:抛物线的顶点坐标是 ,抛物线的对称轴方程是 ,抛物线与x轴交点坐标是 ,当x 时,y随x的增大而增大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图2,与是两个全等的等腰三角形,,分别与相交于点,.
(1)图中有哪几对不全等的相似三角形,请把他们表示出来;
(2)根据图1两位同学对图形的探索,试探索之间的关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B重合的一个动点,点Q是y轴上的一个动点.
(1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集;
(2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;
(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过点A,作AC⊥x轴于点C.
(1)求k的值;
(2)直线y=ax+b(a≠0)图象经过点A交x轴于点B,且OB=2AC.求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,P是CB边上一动点,连接AP,作PQ⊥AP交AB于Q.已知AC=3cm,BC=6cm,设PC的长度为xcm,BQ的长度为ycm.
小青同学根据学习函数的经验对函数y随自变量x的变化而变化的规律进行了探究.
下面是小青同学的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y的几组对应值;
x/cm | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
y/cm | 0 | 1.56 | 2.24 | 2.51 | m | 2.45 | 2.24 | 1.96 | 1.63 | 1.26 | 0.86 | 0 |
(说明:补全表格时,相关数据保留一位小数)
m的值约为多少cm;
(2)在平面直角坐标系中,描出以补全后的表格中各组数值所对应的点(x,y),画出该函数的图象;
(3)结合画出的函数图象,解决问题:
①当y>2时,写出对应的x的取值范围;
②若点P不与B,C两点重合,是否存在点P,使得BQ=BP?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B,C是⊙O上的三个点,点D在BC的延长线上.有如下四个结论:①在∠ABC所对的弧上存在一点E,使得∠BCE=∠DCE;②在∠ABC所对的弧上存在一点E,使得∠BAE=∠AEC;③在∠ABC所对的弧上存在一点E,使得EO平分∠AEC;④在∠ABC所对的弧上任意取一点E(不与点A,C重合) ,∠DCE=∠ABO +∠AEO均成立.上述结论中,所有正确结论的序号是( )
A. ①②③ B. ①③④ C. ②④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O′在第一象限,⊙O′与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O′的坐标是( )
A. (6,4) B. (4,6) C. (5,4) D. (4,5)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com