精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=x22x8

1)用配方法把y=x22x8化为y=xh2+k形式;

2)并指出:抛物线的顶点坐标是 ,抛物线的对称轴方程是 ,抛物线与x轴交点坐标是 ,当x 时,yx的增大而增大.

【答案】

1 1

=x22x+118

=(x1)29.

2 (2)抛物线的顶点坐标是 (1,-9)

抛物线的对称轴方程是 x="1 " ……………………………4

抛物线与x轴交点坐标是(-20)(40);

x 1 时,yx的增大而增大

【解析】

试题(1)、利用配方法,将抛物线的一般式方程转化为顶点式方程;(2)、根据(1)中的顶点式方程找出该抛物线的顶点坐标、对称轴方程;等y=0时,求抛物线与x轴的交点坐标;由抛物线的性质来解答yx的增大而增大时x的取值范围.

试题解析:(1)y=x2﹣2x﹣8 =x2﹣2x+1﹣1﹣8 =x﹣12﹣9

(2)、由(1)知,抛物线的解析式为:y=x﹣12﹣9抛物线的顶点坐标是(1﹣9

抛物线的对称轴方程是x=1 y=0时, (x﹣12﹣9=0, 解得x=﹣2x=4

抛物线与x轴交点坐标是(﹣20),(40); 该抛物线的开口向上,对称轴方程是x=1

x1时,yx的增大而增大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列函数中,y关于x的二次函数是( )

A. yax2+bx+c B. yx(x1)

C. y= D. y(x1)2x2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD为圆O的直径,直线ED为圆O的切线,AC两点在圆上,AC平分∠BAD且交BDF点.若∠ADE19°,则∠AFB的度数为何?(  )

A. 97° B. 104° C. 116° D. 142°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:

下列说法正确的是(  )

A. 抛物线的开口向下

B. x>-3时,yx的增大而增大

C. 二次函数的最小值是-2

D. 抛物线的对称轴是x=-

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=﹣x2+2mx﹣m2+1的对称轴是直线x=1.

(1)求抛物线的表达式;

(2)点D(n,y1),E(3,y2)在抛物线上,若y1y2,请直接写出n的取值范围;

(3)设点M(p,q)为抛物线上的一个动点,当﹣1p2时,点M关于y轴的对称点都在直线y=kx﹣4的上方,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在梯形ABCD中,ADBCAB=DCE是对角线AC上一点,且AC·CE=AD·BC.

1)求证:∠DCA=EBC

2)延长BEADF,求证:AB2=AF·AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,的中点.的半径为3,动点从点出发沿方向以每秒1个单位的速度向点运动,设运动时间为.

1)当以为半径的相切时,求的值;

2)探究:在线段上是否存在点,使得与直线相切,且与相外切?若存在,求出此时的值及相应的的半径;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yx2+bx3经过点A10),顶点为点M

1)求抛物线的表达式及顶点M的坐标;

2)求∠OAM的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线分别交x轴、y轴于点A(2,0)、B(0,4),点P是线段AB上一动点,过点PPCx轴于点C,交抛物线于点D

(1)

①求抛物线的解析式;

②当线段PD的长度最大时,求点P的坐标;

(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以BPD为顶点的三角形与AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案