精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在梯形ABCD中,ADBCAB=DCE是对角线AC上一点,且AC·CE=AD·BC.

1)求证:∠DCA=EBC

2)延长BEADF,求证:AB2=AF·AD.

【答案】(1)见解析;(2)见解析.

【解析】

(1)由ADBC得∠DAC=BCA, AC·CE=AD·BC∴△ACD∽△CBE ,

∴∠DCA=EBC,

(2)由题中条件易证得△ABF∽△DAC,又∵AB=DC,∴

证明:

1)∵ADBC

∴∠DAC=BCA,

AC·CE=AD·BC

,

∴△ACD∽△CBE ,

∴∠DCA=EBC,

2)∵ADBC

∴∠AFB=EBC,

∵∠DCA=EBC

∴∠AFB=DCA,

ADBCAB=DC,

∴∠BAD=ADC,

∴△ABF∽△DAC,

,

AB=DC

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线yax2+bx+3A(30)B(10)两点,交y轴于点C

(1)求该抛物线的表达式.

(2)P是该抛物线上的动点,当△PAB的面积等于△ABC的面积时,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.

(1)求证:BD=CD;

(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABC中,A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,BPQ与ABC重叠部分的面积为S.如图2是S关于x的函数图象(其中0x8,8xm,mx16时,函数的解析式不同).

(1)填空:m的值为

(2)求S关于x的函数关系式,并写出x的取值范围;

(3)请直接写出PCQ为等腰三角形时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x22x8

1)用配方法把y=x22x8化为y=xh2+k形式;

2)并指出:抛物线的顶点坐标是 ,抛物线的对称轴方程是 ,抛物线与x轴交点坐标是 ,当x 时,yx的增大而增大.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知是位似图形,垂直平分,且

(1)的度数;

(2)的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是( )

A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件

B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是,则甲的射击成绩较稳定

C.明天降雨的概率为,表示明天有半天都在降雨

D.了解一批电视机的使用寿命,适合用普查的方式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线与x轴交于A(-1,0)B(3,0)两点,与y轴交于点C(0,3).

1)求该抛物线所对应的函数关系式

(2)设抛物线上的一个动点P的横坐标为t0t3过点PPDBC于点D.求线段PD的长的最大值;② BD=2CD时,求t的值;

3)若点Q是抛物线的对称轴上的动点,抛物线上存在点M,使得以BCQM为顶点的四边形为平行四边形,请求出所有满足条件的点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠C=90°,PCB边上一动点,连接AP,作PQAPABQ.已知AC=3cm,BC=6cm,设PC的长度为xcm,BQ的长度为ycm.

小青同学根据学习函数的经验对函数y随自变量x的变化而变化的规律进行了探究.

下面是小青同学的探究过程,请补充完整:

(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y的几组对应值;

x/cm

0

0.5

1.0

1.5

2.0

2.5

3

3.5

4

4.5

5

6

y/cm

0

1.56

2.24

2.51

m

2.45

2.24

1.96

1.63

1.26

0.86

0

(说明:补全表格时,相关数据保留一位小数)

m的值约为多少cm;

(2)在平面直角坐标系中,描出以补全后的表格中各组数值所对应的点(x,y),画出该函数的图象

(3)结合画出的函数图象,解决问题:

①当y>2时,写出对应的x的取值范围;

②若点P不与B,C两点重合,是否存在点P,使得BQ=BP?

查看答案和解析>>

同步练习册答案