精英家教网 > 初中数学 > 题目详情

【题目】如图,RtABC中,∠C=90°,PCB边上一动点,连接AP,作PQAPABQ.已知AC=3cm,BC=6cm,设PC的长度为xcm,BQ的长度为ycm.

小青同学根据学习函数的经验对函数y随自变量x的变化而变化的规律进行了探究.

下面是小青同学的探究过程,请补充完整:

(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y的几组对应值;

x/cm

0

0.5

1.0

1.5

2.0

2.5

3

3.5

4

4.5

5

6

y/cm

0

1.56

2.24

2.51

m

2.45

2.24

1.96

1.63

1.26

0.86

0

(说明:补全表格时,相关数据保留一位小数)

m的值约为多少cm;

(2)在平面直角坐标系中,描出以补全后的表格中各组数值所对应的点(x,y),画出该函数的图象

(3)结合画出的函数图象,解决问题:

①当y>2时,写出对应的x的取值范围;

②若点P不与B,C两点重合,是否存在点P,使得BQ=BP?

【答案】(1)根据题意量取数据m2.6;(2)如图见解析;(3)0.8<x<3.5,②不存在,理由见解析.

【解析】

(1)根据题意量取数据即可得出m

(2)根据已知数据描点连线得

(3)①由图象信息即可得出x的范围

②根据三角形内角和判断即可.

(1)根据题意量取数据m为2.6,

(2)根据已知数据描点连线得

(3)①由图象可得,当0.8<x<3.5时,y>2.

②不存在,

理由如下:若BQ=BP

∴∠BPQ=BQP

∵∠BQP=APQ+PAQ>90°

∴∠BPQ+BQP+QBP>180°与三角形内角和为180°相矛盾.

∴不存在点P,使得BQ=BP.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在梯形ABCD中,ADBCAB=DCE是对角线AC上一点,且AC·CE=AD·BC.

1)求证:∠DCA=EBC

2)延长BEADF,求证:AB2=AF·AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,函数yx>0)的图象经过点A,作ACx轴于点C

(1)求k的值;

(2)直线yax+ba≠0)图象经过点Ax轴于点B,且OB=2AC.求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.

(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.

解题思路:延长DC到点E,使CE=BD,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE,易证△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而解决问题.

根据上述解题思路,三条线段DA、DB、DC之间的等量关系是;(直接写出结果)

(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC=90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线分别交x轴、y轴于点A(2,0)、B(0,4),点P是线段AB上一动点,过点PPCx轴于点C,交抛物线于点D

(1)

①求抛物线的解析式;

②当线段PD的长度最大时,求点P的坐标;

(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以BPD为顶点的三角形与AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,PCD边上一点(DPCP),APB90°MAB上,且APMAPD,过点BBNMPDC于点N

1)求证:四边形PMBN是菱形;

2)求证:ADBCDPPC

3)如图2,连接AC,分别交PMPB于点EF,若DP1AD2,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C是⊙O直径AB上一点,过CCDAB交⊙O于点D,连接DA,延长BA至点P,连接DP,使∠PDAADC

(1)求证:PD是⊙O的切线;

(2)若AC=3,tanPDC,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是⊙O的内接四边形, AC为直径, DEBC,垂足为E

1)求证:CD平分∠ACE

2)若AC9CE3,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l1y=﹣x与反比例函数y的图象交于AB两点(点A在点B左侧),已知A点的纵坐标是2

1)求反比例函数的表达式;

2)根据图象直接写出﹣x的解集;

3)将直线l1y=- x沿y向上平移后的直线l2与反比例函数y在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.

查看答案和解析>>

同步练习册答案