精英家教网 > 初中数学 > 题目详情

【题目】如图,点C是⊙O直径AB上一点,过CCDAB交⊙O于点D,连接DA,延长BA至点P,连接DP,使∠PDAADC

(1)求证:PD是⊙O的切线;

(2)若AC=3,tanPDC,求BC的长.

【答案】(1)证明见解析;(2)BC=12.

【解析】

(1)求出∠ODA+PDA=ADC+DAO=90°,根据切线的判定得出即可;
(2)求出∠PDC=DOC,解直角三角形求出=,设DC=4x,OC=3x,求出3x+3=5x,求出x,即可得出答案.

(1)证明:连接OD

OD=OA

∴∠ODA=OAD

CDAB于点C

∴∠OAD+ADC=90°

∴∠ODA+ADC= 90°

∵∠PDA=ADC

∴∠PDA+ODA=90°

即∠PDO=90°

PDOD

D在⊙O

PD是⊙O的切线

(2)解:∵∠PDO=90°

∴∠PDC+CDO=90°

CDAB于点C

∴∠DOC+CDO=90°

∴∠PDC=DOC

=

DC = 4xCO = 3x,则OD=5x

AC=3

OA=3x+3

3x+3=5x

x=

OC=3x=OD=OB=5x=

BC=12

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列说法正确的是( )

A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件

B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是,则甲的射击成绩较稳定

C.明天降雨的概率为,表示明天有半天都在降雨

D.了解一批电视机的使用寿命,适合用普查的方式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知抛物线yax2a0)与一次函数ykx+b的图象相交于A(﹣1,﹣1),B2,﹣4)两点,点P是抛物线上不与AB重合的一个动点,点Qy轴上的一个动点.

1)请直接写出akb的值及关于x的不等式ax2kx2的解集;

2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;

3)是否存在以PQAB为顶点的四边形是平行四边形?若存在,请直接写出PQ的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠C=90°,PCB边上一动点,连接AP,作PQAPABQ.已知AC=3cm,BC=6cm,设PC的长度为xcm,BQ的长度为ycm.

小青同学根据学习函数的经验对函数y随自变量x的变化而变化的规律进行了探究.

下面是小青同学的探究过程,请补充完整:

(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y的几组对应值;

x/cm

0

0.5

1.0

1.5

2.0

2.5

3

3.5

4

4.5

5

6

y/cm

0

1.56

2.24

2.51

m

2.45

2.24

1.96

1.63

1.26

0.86

0

(说明:补全表格时,相关数据保留一位小数)

m的值约为多少cm;

(2)在平面直角坐标系中,描出以补全后的表格中各组数值所对应的点(x,y),画出该函数的图象

(3)结合画出的函数图象,解决问题:

①当y>2时,写出对应的x的取值范围;

②若点P不与B,C两点重合,是否存在点P,使得BQ=BP?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点ABC是⊙O上的三个点,点DBC的延长线上.有如下四个结论:①在∠ABC所对的弧上存在一点E,使得∠BCE=DCE②在∠ABC所对的弧上存在一点E,使得∠BAE=AEC③在∠ABC所对的弧上存在一点E,使得EO平分∠AEC④在∠ABC所对的弧上任意取一点E(不与点A,C重合)DCE=ABO +AEO均成立.上述结论中,所有正确结论的序号是( )

A. ①②③ B. ①③④ C. ②④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了落实国务院的指示精神,某地方政府出台了一系列三农优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.

1)求wx之间的函数关系式.

2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?

3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O′在第一象限,⊙O′x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O′的坐标是(  )

A. (6,4) B. (4,6) C. (5,4) D. (4,5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,点DAB上一点,以AD为直径作⊙OACE,与BC相切于点F,连接AF

1)求证:∠BAF=CAF

2)若AC=6BC=8,求BDCE的长;

3)在(2)的条件下,若AFDE交于H,求FHFA的值.(直接写出结果即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市某幼儿园六一期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,主持人准备把家长和孩子重新组合完成游戏,ABC分别表示三位家长,他们的孩子分别对应的是abc

1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是Aa的概率是多少(直接写出答案)

2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)

查看答案和解析>>

同步练习册答案