精英家教网 > 初中数学 > 题目详情

【题目】一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.

(1)求y关于x的函数关系式;(不需要写定义域)

(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?

【答案】(1)该一次函数解析式为y=﹣x+60.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.

【解析】

1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;

(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.

(1)设该一次函数解析式为y=kx+b,

将(150,45)、(0,60)代入y=kx+b中,得

,解得:

∴该一次函数解析式为y=﹣x+60;

(2)当y=﹣x+60=8时,

解得x=520,

即行驶520千米时,油箱中的剩余油量为8升.

530﹣520=10千米,

油箱中的剩余油量为8升时,距离加油站10千米

∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1的各边长按原法延长一倍得到正方形A2B2C2D2;以此进行下去…则正方形A4B4C4D4的面积为_____;正方形AnBnCnDn的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、B、C是⊙O上的三点,AB∥OC.

(1)求证:AC平分∠OAB;
(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求PE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线 分别交x轴、y轴于A、B两点.

(1)求A、B两点的坐标;
(2)设P是直线AB上一动点(点P与点A不重合),⊙P始终和x轴相切,和直线AB相交于C、D两点(点C的横坐标小于点D的横坐标).若P点的横坐标为m,试用含有m的代数式表示点C的横坐标;
(3)在(2)的条件下,若点C在线段AB上,当△BOC为等腰三角形时求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据图填空:

1)如图1,因为∠1=∠2,(已知)

2=∠3,(               )

所以∠1=∠3

所以ABCD.(             )

2)如图2,因为∠1110°(已知)

1+∠2180°,(           )

所以∠2=(     )

又因为∠370°,(已知)

所以∠2=∠3

所以ab.(                )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.

1)求这两种商品的进价.

2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列方程:①;②;③;④;⑤;⑥,其中是二元一次方程的是(

A.B.①④C.①③D.①②④⑥

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了解学生的课外阅读情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间/(单位:min),然后利用所得数据绘制成如下不完整的统计图表.

根据图表中提供的信息,回答下列问题:

(1)a_____b_____

(2)将频数分布直方图补充完整;

(3)若该校共1 000名学生,估计有多少学生平均每天的课外阅读时间不少于50min?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,双曲线y= 经过点A(1,2),过点A作y轴的垂线,垂足为B,交双曲线y=﹣ 于点C,直线y=m(m≠0)分别交双曲线y=﹣ 、y= 于点P、Q.

(1)求k的值;
(2)若△OAP为直角三角形,求点P的坐标;
(3)△OCQ的面积记为SOCQ , △OAP的面积记为S△OAP,试比较SOCQ与SOAP的大小(直接写出结论).

查看答案和解析>>

同步练习册答案