精英家教网 > 初中数学 > 题目详情

【题目】如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2.过点D作DF∥BC,交AB的延长线于点F.

(1)求证:DF为⊙O的切线;
(2)若∠BAC=60°,DE=,求图中阴影部分的面积;
(3)若=,DF+BF=8,如图2,求BF的长.

【答案】
(1)

证明:连结OD,如图1,

∵AD平分∠BAC交⊙O于D,

∴∠BAD=∠CAD,

=

∴OD⊥BC,

∵BC∥EF,

∴OD⊥DF,

∴DF为⊙O的切线;


(2)

解:连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,

∵∠BAC=60°,AD平分∠BAC,

∴∠BAD=30°,

∴∠BOD=2∠BAD=60°,

∴△OBD为等边三角形,

∴∠ODB=60°,OB=BD=2

∴∠BDF=30°,

∵BC∥DF,

∴∠DBP=30°,

在Rt△DBP中,PD=BD=,PB=PD=3,

在Rt△DEP中,∵PD=,DE=

∴PE==2,

∵OP⊥BC,

∴BP=CP=3,

∴CE=3﹣2=1,

易证得△BDE∽△ACE,

∴AE:BE=CE:DE,即AE:5=1:

∴AE=

∵BE∥DF,

∴△ABE∽△AFD,

=,即=,解得DF=12,

在Rt△BDH中,BH=BD=

∴S阴影部分=SBDF﹣S弓形BD

=SBDF﹣(S扇形BOD﹣SBOD

=12+(22

=9﹣2π;


(3)

解:连结CD,如图2,

=可设AB=4x,AC=3x,设BF=y,

=

∴CD=BD=2

∵∠F=∠ABC=∠ADC,

∵∠FDB=∠DBC=∠DAC,

∴△BFD∽△CDA,

=,即=

∴xy=4,

∵∠FDB=∠DBC=∠DAC=∠FAD,

而∠DFB=∠AFD,

∴△FDB∽△FAD,

=,即=

整理得16﹣4y=xy,

∴16﹣4y=4,解得y=3,

即BF的长为3.


【解析】(1)连结OD,如图1,由角平分线定义得∠BAD=∠CAD,则根据圆周角定理得到= , 再根据垂径定理得OD⊥BC,由于BC∥EF,则OD⊥DF,于是根据切线的判定定理即可判断DF为⊙O的切线;
(2)连结OB,OD交BC于P,作BH⊥DF于H,如图1,先证明△OBD为等边三角形得到∠ODB=60°,OB=BD=2,易得∠BDF=∠DBP=30°,根据含30度的直角三角形三边的关系,在Rt△DBP中得到PD=BD=,PB=PD=3,接着在Rt△DEP中利用勾股定理计算出PE=2,由于OP⊥BC,则BP=CP=3,所以CE=1,然后利用△BDE∽△ACE,通过相似比可得到AE=,再证明△ABE∽△AFD,利用相似比可得DF=12,最后根据扇形面积公式,利用S阴影部分=SBDF﹣S弓形BD=SBDF﹣(S扇形BOD﹣SBOD)进行计算;
(3)连结CD,如图2,由=可设AB=4x,AC=3x,设BF=y,由=得到CD=BD=2,先证明△BFD∽△CDA,利用相似比得到xy=4,再证明△FDB∽△FAD,利用相似比得到16﹣4y=xy,则16﹣4y=4,然后解方程易得BF=3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我市民营经济持续发展,2015年城镇民营企业就业人数突破20万.为了解城镇民营企业员工每月的收入状况,统计局对全市城镇民营企业员工2015年月平均收入随机抽样调查,将抽样的数据按“2000元以内”、“2000元~4000元”、“4000元~6000元”和“6000元以上”分为四组,进行整理,分别用A,B,C,D表示,得到下列两幅不完整的统计图.

由图中所给出的信息解答下列问题:
(1)本次抽样调查的员工有人,在扇形统计图中x的值为 , 表示“月平均收入在2000元以内”的部分所对应扇形的圆心角的度数是
(2)将不完整的条形图补充完整,并估计我市2015年城镇民营企业20万员工中,每月的收入在“2000元~4000元”的约多少人?
(3)统计局根据抽样数据计算得到,2016年我市城镇民营企业员工月平均收入为4872元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC和△BCD中,AB=DC,AC=DB,AC、DB交于点M.
(1)求证:△ABC≌△DCB;
(2)作CN∥BD,BN∥AC,CN交BN于点N,求证:四边形BNCM是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.

(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在我市开展“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A1 , A2依次在y=(x>0)的图象上,点B1 , B2依次在x轴的正半轴上.若△A1OB1 , △A2B1B2均为等边三角形,则点B2的坐标为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则购买盒子所需要最少费用为 元.

型号

A

B

单个盒子容量(升)

2

3

单价(元)

5

6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AB=6,过点O作OH⊥AB交圆于点H,点C是弧AH上异于A、B的动点,过点C作CD⊥OA,CE⊥OH,垂足分别为D、E,过点C的直线交OA的延长线于点G,且∠GCD=∠CED.

(1)求证:GC是⊙O的切线;
(2)求DE的长;
(3)过点C作CF⊥DE于点F,若∠CED=30°,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为二次函数y=ax2+bx+c的图象,在下列说法中:
①ac<0;
②方程ax2+bx+c=0的根是x1=﹣1,x2=3;
③a+b+c>0;
④当x>1时,y随着x的增大而增大.
正确的说法有 . (请写出所有正确的序号)

查看答案和解析>>

同步练习册答案