【题目】如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
(1)求抛物线的解析式及点A、B、C的坐标;
(2)若直线y=kx+t经过C、M两点,且与x轴交于点D,探索并判断四边形CDAN是怎样的四边形?并对你得到的结论予以证明;
(3)直线y=mx+2与抛物线交于T,Q两点.是否存在这样的实数m,使以线段TQ为直径的圆恰好过坐标原点,若存在,请求出m的值;若不存在,请说明理由.
【答案】(1),A(-1,0),B(3,0),C(0,3); (2)四边形CDAN是平行四边形,证明见解析;(3)存在,m=
【解析】
(1)根据顶点式设抛物线解析式为()2+4,将N(2,3)代入求,确定抛物线解析式,根据抛物线解析式求点A、B、C的坐标;
(2)根据M、C两点坐标求直线解析式,得出D点坐标,求线段AD,由C、N两点坐标可知CN∥轴,再求CN,证明CN与AD平行且相等,判断断四边形CDAN是平行四边形;
(3)存在.如图设T(,),Q(,),分别过T、Q作TF⊥轴,QG⊥轴,联立直线TQ解析式与抛物线解析式,可得,,,之间的关系,当以线段TQ为直径的圆恰好过坐标原点时,∠TOQ=90°,利用互余关系可证△TOF∽△QOG,利用相似比得出线段关系,结合,,,之间的关系求m的值.
(1)抛物线的顶点坐标为M(1,4),设抛物线解析式为)2+4,
将N(2,3)代入,得(2-1)2+4=3,解得,
∴抛物线解析式为)2+4,即,
令,得,则点C的坐标为(0,3),
令,得
解得:或3,则点A的坐标为(-1,0),点B的坐标为(3,0);
(2)四边形CDAN是平行四边形.
理由:
将点C(0,3),M(1,4),代入直线中,得,
解得,
∴直线CM解析式为,则点D的坐标为(-3,0),
∵C(0,3),N(2,3),
∴CN∥x轴,且,
又∵A(-1,0),D(-3,0),
∴AD=-1-(-3)=2,
∴四边形CDAN是平行四边形;
(3)存在.
如图设T(,),Q(,),分别过T、Q作TF⊥轴,QG⊥轴,
联立,
整理得,
∴,,
当以线段TQ为直径的圆恰好过坐标原点时,∠TOQ=90°,
∴∠TOF+∠FOQ=∠FOQ+∠QOB=90°,
∴∠TOF=∠QOB,而∠TFO=∠QGO=90°,
∴△TOF∽△QOG,
∴,即,
∴,即,
整理得:,
∴,整理,得,
解得,
故存在实数使以线段TQ为直径的圆过坐标原点.
科目:初中数学 来源: 题型:
【题目】已知函数y1=2kx+k与函数,定义新函数y=y2﹣y1
(1)若k=2,则新函数y= ;
(2)若新函数y的解析式为y=x2+bx﹣2,则k= ,b= ;
(3)设新函数y顶点为(m,n).
①当k为何值时,n有大值,并求出最大值;
②求n与m的函数解析式;
(4)请你探究:函数y1与新函数y分别经过定点B,A,函数的顶点为C,新函数y上存在一点D,使得以点A,B,C,D为顶点的四边形为平行四边形时,直接写出k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘成如图所示的频数分布直方图,己知成绩x(单位:分)均满足“50≤x<100”.根据图中信息回答下列问题:
(1)图中a的值为 ;
(2)若要绘制该样本的扇形统计图,则成绩x在“70≤x<80”所对应扇形的圆心角度数为 度;
(3)此次比赛共有300名学生参加,若将“x≥80”的成绩记为“优秀”,则获得“优秀“的学生大约有 人:
(4)在这些抽查的样本中,小明的成绩为92分,若从成绩在“50≤x<60”和“90≤x<100”的学生中任选2人,请用列表或画树状图的方法,求小明被选中的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球.B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;
(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(6,-1),DE=3.
(1)求反比例函数与一次函数的解析式.
(2)根据图象写出不等式kx+b>的解集.
(3)连接OC、OD,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H.
(1)求抛物线的解析式和顶点C的坐标;
(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;
(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为进一步推动各级各类学校新型冠状病毒肺炎疫情防控工作,向广大教职工和学生普及新型冠状病毒肺炎疫情防控知识,做好师生返校前的卫生安全防护教育,上好开学第一课,省教育厅要求各级各类学校认真学习相关资料.某中学为了解学生的学习成果,对学生进行了新型冠状病毒肺炎防控知识测试,德育处随机从七、八两个年级各抽取20名学生的答卷成绩(单位:分)进行统计分析,过程如下:
收集数据
八年级:
85 | 80 | 95 | 100 | 90 | 95 | 85 | 65 | 75 | 85 |
90 | 90 | 70 | 90 | 100 | 80 | 80 | 90 | 95 | 75 |
七年级:
80 | 60 | 80 | 95 | 65 | 100 | 90 | 85 | 85 | 80 |
95 | 75 | 80 | 90 | 70 | 80 | 95 | 75 | 100 | 90 |
整理数据
成绩(分) | ||||
八年级 | 2 | 5 | ||
七年级 | 3 | 7 | 5 | 5 |
分析数据
统计量 | 平均数 | 中位数 | 众数 |
八年级 | 85.75 | 87.5 | |
七年级 | 83.5 | 80 |
应用数据
(1)填空:__________,__________,__________,__________;
(2)看完统计数据,你认为对新型冠状病毒肺炎防护知识掌握更好的年级是__________;
(3)若八年级共有500人参与答卷,请估计八年级成绩大于90分的人数;
(4)在这次测试中,八年级学生甲与七年级学生乙的成绩都是85分,请判断两人在各自年级的排名谁更靠前,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有5张除正面数字外完全相同的卡片,正面数字分别为1,2,3,4,5,将卡片背面朝上洗匀,从中随机抽出一张记下数字后放回,洗匀后再次随机抽出一张,则抽出的两张卡片上所写数字相同的概率______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级共有四个班,各班人数比例如图1所示.在一次数学考试中,四个班的平均成绩如图2所示.
(1)四个班平均成绩的中位数是________;
(2)下列说法:①3班85分以上人数最少;②1,3两班的平均分差距最小;③本次考试年段成绩最高的学生在4班.其中正确的是________(填序号);
(3)若用公式(m,n分别表示各班平均成绩)分别计算1,2两班和3,4两班的平均成绩,哪两班的计算结果会与实际平均成绩相同,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com