【题目】已知函数y1=2kx+k与函数,定义新函数y=y2﹣y1
(1)若k=2,则新函数y= ;
(2)若新函数y的解析式为y=x2+bx﹣2,则k= ,b= ;
(3)设新函数y顶点为(m,n).
①当k为何值时,n有大值,并求出最大值;
②求n与m的函数解析式;
(4)请你探究:函数y1与新函数y分别经过定点B,A,函数的顶点为C,新函数y上存在一点D,使得以点A,B,C,D为顶点的四边形为平行四边形时,直接写出k的值.
【答案】(1)x2﹣6x+1;(2)5,﹣12;(3)①;② n=﹣m2﹣m+4;(4)或﹣或﹣.
【解析】
(1)把代入 再把代入新函数即可得到答案,
(2)利用新函数的定义,结论关于的方程组即可得到答案,
(3)①利用新函数的定义,写出函数解析式,化为顶点式,利用二次函数的性质可得答案,②利用顶点坐标,消去
得到答案,
(4)先分别求解的坐标,设,分三种情况讨论,利用平行四边形的对角线互相平分及中点坐标公式可得答案.
解:(1)当k=2时,y1=2kx+k=4x+2,
∵函数,定义新函数y=y2﹣y1,
∴y=x2﹣2x+3﹣4x﹣2=x2﹣6x+1,
故答案为:x2﹣6x+1;
(2)函数y1=2kx+k与函数,定义新函数y=y2﹣y1,
∴新函数y的解析式为y=x2﹣2x+3﹣2kx﹣k=x2﹣2(k+1)x+3﹣k,
∵新函数y的解析式为y=x2+bx﹣2,
∴b=,3﹣k=﹣2,
∴k=5,b=﹣12,
故答案为:5,﹣12;
(3)①由(2)知,新函数y=x2﹣2(k+1)x+3﹣k=(x﹣k﹣1)2﹣k2﹣3k+2,
∵新函数y顶点为(m,n),
∴
∴,
当时,的最大值
②由①知,
将k=m﹣1代入n=﹣k2﹣3k+2得:
∴n=﹣m2﹣m+4;
(4)∵函数y1=2kx+k=k(2x+1),
当2x+1=0即x=时,y=0,
∴A(,0),
∵新函数y=x2﹣2(k+1)x+3﹣k=x2﹣2(k+1)x﹣(k+1)+4=x2﹣(k+1)(2x+1)+4,
当2x+1=0,即x=时,y=
∴B,
∵函数
∴C(1,2),
设D(c,d),
∵以点A,B,C,D为顶点的四边形为平行四边形,
∴①当BC与AD为对角线时,
∴
∴D(1,),
将点D坐标代入新函数y=x2﹣2(k+1)x+3﹣k,
得,1﹣2(k+1)+3﹣k=,
∴
②当AB与CD是对角线时,
∴D(),
将点D坐标代入新函数y=x2﹣2(k+1)x+3﹣k
得,4+4(k+1)+3﹣k=,
∴k=,
③当AC与BD为对角线时,
∴
∴D(1,),
将点D坐标代入新函数y=x2﹣2(k+1)x+3﹣k
得,1﹣2(k+1)+3﹣k=,
∴k=,
即满足条件的k的值为或或.
科目:初中数学 来源: 题型:
【题目】学校为了解全校1600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).
(1)问:在这次调查中,一共抽取了多少名学生?
(2)补全频数分布直方图;
(3)估计全校所有学生中有多少人乘坐公交车上学.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中,每一个小正方形的边长都是1个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,1),B(3,2),C(2,4).
(1)画出△ABC关于x轴对称的△A1B1C1,直接写出点A1的坐标;
(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;
(3)在(2)的条件下,求BC边所扫过的面积.(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,抛物线与轴交于点、,与轴交于点,抛物线的顶点到轴的距离为,.
(1)如图1,求抛物线的解析式;
(2)如图2,点为第三象限内的抛物线上一点,连接交轴于点,过点作轴于点,连接并延长交于点,求证:;
(3)如图3,在(2)的条件下,点为第二象限内的抛物线上的一点,分别连接、,点为的中点,点为第二象限内的一点,分别连接,,,且,,若,求点的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某校组织“学经典,用经典”知识竞赛,每班参加比赛的学生人数相同,成绩分为四个等级,其中相应等级的得分依次记为分,分,分,分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:
请你根据以上提供的信息解答下列问题:
(1)此次竞赛中二班成绩“级”的人数为 ;
(2)请你将下表补充完整:
平均数(分) | 中位数(分) | 众数(分) | |
一班 | |||
二班 |
(3)请你对这次两班成绩统计数据的结果进行分析(写出一条结论即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种高档蔬菜“莼菜”,其进价为16元/kg.经市场调查发现:该商品的日销售量y(kg)是售价x(元/kg)的一次函数,其售价、日销售量对应值如表:
售价(元/) | 20 | 30 | 40 |
日销售量() | 80 | 60 | 40 |
(1)求关于的函数解析式(不要求写出自变量的取值范围);
(2)为多少时,当天的销售利润 (元)最大?最大利润为多少?
(3)由于产量日渐减少,该商品进价提高了元/,物价部门规定该商品售价不得超过36元/,该商店在今后的销售中,日销售量与售价仍然满足(1)中的函数关系.若日销售最大利润是864元,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在以线段AB为直径的⊙O上取一点,连接AC、BC.将△ABC沿AB翻折后得到△ABD.
(1)试说明点D在⊙O上;
(2)在线段AD的延长线上取一点E,使AB2=AC·AE.求证:BE为⊙O的切线;
(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
如图1,抛物线y=ax2+bx﹣3与x轴交于A(﹣2,0),B(4,0)两点,与y轴交于点C.
(1)求抛物线的表达式;
(2)点N是抛物线上异于点C的动点,若△NAB的面积与△CAB的面积相等,求出点N的坐标;
(3)如图2,当P为OB的中点时,过点P作PD⊥x轴,交抛物线于点D.连接BD,将△PBD沿x轴向左平移m个单位长度(0<m≤2),将平移过程中△PBD与△OBC重叠部分的面积记为S,求S与m的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
(1)求抛物线的解析式及点A、B、C的坐标;
(2)若直线y=kx+t经过C、M两点,且与x轴交于点D,探索并判断四边形CDAN是怎样的四边形?并对你得到的结论予以证明;
(3)直线y=mx+2与抛物线交于T,Q两点.是否存在这样的实数m,使以线段TQ为直径的圆恰好过坐标原点,若存在,请求出m的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com