【题目】综合与探究
如图1,抛物线y=ax2+bx﹣3与x轴交于A(﹣2,0),B(4,0)两点,与y轴交于点C.
(1)求抛物线的表达式;
(2)点N是抛物线上异于点C的动点,若△NAB的面积与△CAB的面积相等,求出点N的坐标;
(3)如图2,当P为OB的中点时,过点P作PD⊥x轴,交抛物线于点D.连接BD,将△PBD沿x轴向左平移m个单位长度(0<m≤2),将平移过程中△PBD与△OBC重叠部分的面积记为S,求S与m的函数关系式.
【答案】(1)y=x2﹣x﹣3;(2)点N的坐标是(+1,3)或(﹣+1,3)或(2,﹣3);(3)S=﹣m2+m+.
【解析】
(1)把点A、B的坐标分别代入抛物线解析式,列出关于系数a、b的解析式,通过解方程组求得它们的值;
(2)由抛物线解析式求得点C的坐标,即OC=3,所以由三角形的面积公式得到点N到x轴的距离为3,据此列出方程并解答;
(3)如图2,由已知得,QB=m,PQ=2,利用待定系数法确定直线BC的表达式为y=x﹣3.根据二次函数图象上点的坐标特征和坐标与图形的性质求得D(2,﹣3),所以直线CD∥x轴.由此求得EM的长度;过点F作FH⊥PM于点M,构造相似三角形:△MHF∽△MPQ和△CMF∽△BQF,根据相似三角形的对应边成比例推知=.设MF=k(2﹣m),QF=km,由三角形的面积公式和图形得到:S=S△PQM﹣S△EMF=3﹣(﹣m+)(2﹣m)=﹣m2+m+.
解:(1)如图1,把点A(﹣2,0)、B(4,0)分别代入y=ax2+bx﹣3(a≠0),得
,
解得,
所以该抛物线的解析式为:y=x2﹣x﹣3;
(2)将x=0代入y=x2﹣x﹣3,得y=﹣3,
∴点C的坐标为(0,﹣3),
∴OC=3.
设N(x,y),
∵S△NAB=S△CAB,
∴|y|=OC=3,
∴y=±3.
当y=3时,x2﹣x﹣3=3,
解得x=+1.
当y=﹣3时,x2﹣x﹣3=﹣3,
解得x1=2,x2=0(舍去).
综上所述,点N的坐标是(+1,3)或(﹣+1,3)或(2,﹣3);
(3)如图2,由已知得,QB=m,PQ=2,
设直线BC的表达式为y=kx+b(k≠0).
∵直线y=kx+b经过点B(4,0),C(0,﹣3),
∴,
解得,
∴直线BC的表达式为y=x﹣3.
当0<m≤2时,由已知得PB=2+m.
∵OP=2﹣m,
∴E(2﹣m,﹣m﹣).
由OB=4得OP=2,
把x=2代入y=x2﹣x﹣3中,得y=﹣3,
∴D(2,﹣3),
∴直线CD∥x轴.
∵EP=m+,MP=3,
∴EM=MP﹣EP=3﹣m﹣=﹣m+.
过点F作FH⊥PM于点M,则∠MHF=∠MPQ=90°.
∵∠HMF=∠PMQ,
∴△MHF∽△MPQ,
∴=.
∵∠FCM=∠FBQ,∠FMC=∠FQB,
∴△CMF∽△BQF,
∴=.
∵CD=2,
∴CM=2﹣m,
∴=.
设MF=k(2﹣m),QF=km,
∴MQ=2k,
∴=.
∴=.
∵PQ=2,
∴HF=2﹣m.
∴S△EMF=EMHF=(﹣m+)(2﹣m).
∵S△PQM=PQPM=×3×2=3,
∴S=S△PQM﹣S△EMF=3﹣(﹣m+)(2﹣m)=﹣ m2+ m+ .
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BCA=90°,D为AC边上一动点,O为BD中点,DE⊥AB,垂足为E,连结OE,CO,延长CO交AB于F,设∠BAC=α,则( )
A.∠EOF=αB.∠EOF=2α
C.∠EOF=180°﹣αD.∠EOF=180°﹣2α
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y1=2kx+k与函数,定义新函数y=y2﹣y1
(1)若k=2,则新函数y= ;
(2)若新函数y的解析式为y=x2+bx﹣2,则k= ,b= ;
(3)设新函数y顶点为(m,n).
①当k为何值时,n有大值,并求出最大值;
②求n与m的函数解析式;
(4)请你探究:函数y1与新函数y分别经过定点B,A,函数的顶点为C,新函数y上存在一点D,使得以点A,B,C,D为顶点的四边形为平行四边形时,直接写出k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC.BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.连接OE.
(1)求证:四边形ABCD是菱形;
(2)若AB=.OE=2,求线段CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CE是ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE:S△COD=2:3;以上四个结论中所有正确的结论是( )
A.①②B.①②③C.②④D.①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N,设△BPQ、△DKM、△CNH的面积依次为、、.
(1)求证:△BPQ∽△DKM∽△CNH;
(2)若,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘成如图所示的频数分布直方图,己知成绩x(单位:分)均满足“50≤x<100”.根据图中信息回答下列问题:
(1)图中a的值为 ;
(2)若要绘制该样本的扇形统计图,则成绩x在“70≤x<80”所对应扇形的圆心角度数为 度;
(3)此次比赛共有300名学生参加,若将“x≥80”的成绩记为“优秀”,则获得“优秀“的学生大约有 人:
(4)在这些抽查的样本中,小明的成绩为92分,若从成绩在“50≤x<60”和“90≤x<100”的学生中任选2人,请用列表或画树状图的方法,求小明被选中的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球.B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;
(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有5张除正面数字外完全相同的卡片,正面数字分别为1,2,3,4,5,将卡片背面朝上洗匀,从中随机抽出一张记下数字后放回,洗匀后再次随机抽出一张,则抽出的两张卡片上所写数字相同的概率______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com