【题目】如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC.BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.连接OE.
![]()
(1)求证:四边形ABCD是菱形;
(2)若AB=
.OE=2,求线段CE的长.
【答案】(1)证明见解析;(2)
.
【解析】
(1)先根据题意得出∠OAB=∠DCA,然后进一步证明出∠DCA=∠DAC,得出CD=AD=AB,然后接着进一步证明即可;
(2)先根据题意得出OE=OA=OC=2,再进一步得出OB=1,通过证明△AOB∽△AEC然后利用相似三角形性质进一步求解即可.
(1)证明:∵AB∥CD,
∴∠OAB=∠DCA,
∵AC为∠DAB的平分线,
∴∠OAB=∠DAC,
∴∠DCA=∠DAC,
∴CD=AD=AB,
∵AB∥CD,
∴四边形ABCD是平行四边形,
∵AD=AB,
∴平行四边形ABCD是菱形;
(2)∵四边形ABCD是菱形,
∴OA=OC,BD⊥AC.
∵CE⊥AB,
∴OE=OA=OC=2,
∴OB=
=1,AC=OA+OC=4,
∵∠AOB=∠AEC=90°,∠OAB=∠EAC,
∴△AOB∽△AEC,
∴
,
∴
=
,
∴CE=
.
科目:初中数学 来源: 题型:
【题目】2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.
(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;
(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,抛物线
与
轴交于点
、
,与
轴交于点
,抛物线的顶点
到
轴的距离为
,
.
![]()
(1)如图1,求抛物线的解析式;
(2)如图2,点
为第三象限内的抛物线上一点,连接
交
轴于点
,过点
作
轴于点
,连接
并延长交
于点
,求证:
;
(3)如图3,在(2)的条件下,点
为第二象限内的抛物线上的一点,分别连接
、
,点
为
的中点,点
为第二象限内的一点,分别连接
,
,
,且
,
,若![]()
,求点
的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种高档蔬菜“莼菜”,其进价为16元/kg.经市场调查发现:该商品的日销售量y(kg)是售价x(元/kg)的一次函数,其售价、日销售量对应值如表:
售价 | 20 | 30 | 40 |
日销售量 | 80 | 60 | 40 |
(1)求
关于
的函数解析式(不要求写出自变量的取值范围);
(2)
为多少时,当天的销售利润
(元)最大?最大利润为多少?
(3)由于产量日渐减少,该商品进价提高了
元/
,物价部门规定该商品售价不得超过36元/
,该商店在今后的销售中,日销售量与售价仍然满足(1)中的函数关系.若日销售最大利润是864元,求
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在以线段AB为直径的⊙O上取一点,连接AC、BC.将△ABC沿AB翻折后得到△ABD.![]()
(1)试说明点D在⊙O上;
(2)在线段AD的延长线上取一点E,使AB2=AC·AE.求证:BE为⊙O的切线;
(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=
BF;④AE=BG.其中正确的个数是( )
![]()
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
如图1,抛物线y=ax2+bx﹣3与x轴交于A(﹣2,0),B(4,0)两点,与y轴交于点C.
(1)求抛物线的表达式;
(2)点N是抛物线上异于点C的动点,若△NAB的面积与△CAB的面积相等,求出点N的坐标;
(3)如图2,当P为OB的中点时,过点P作PD⊥x轴,交抛物线于点D.连接BD,将△PBD沿x轴向左平移m个单位长度(0<m≤2),将平移过程中△PBD与△OBC重叠部分的面积记为S,求S与m的函数关系式.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景:
如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.
![]()
(1)实践运用:
如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为 .
(2)知识拓展:
如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在
中,
,
,正方形
的边长为2,将正方形
绕点
旋转一周,连接
、
、
.
![]()
(1)猜想:
的值是__________,直线
与直线
相交所成的锐角度数是__________;
(2)探究:直线
与
垂直时,求线段
的长;
(3)拓展:取
的中点
,连接
,直接写出线段
长的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com