精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形AEHC是由三个全等矩形拼成的,AHBEBFDFDGCG分别交于点PQKMN,设△BPQ、△DKM、△CNH的面积依次为

1)求证:△BPQ∽△DKM∽△CNH

2)若,求的值.

【答案】(1)详见解析;(2)16

【解析】

1)利用矩形的性质,平行四边形的判定与性质,和相似三角形的判定定理进行推理即可;

2)由条件可以得出△ABP∽△ADK∽△ACN,可以求出△ABP与△ADK的相似比为 ,△ADK与△ACN相似比为,由相似三角形的性质,就可以求出K,从而可以求出S2

1)证明:∵矩形AEFBBFGDDGHC互相全等,

BD=DC=EF=FG,且BDEFDCFG

∴四边形BEFDDFGC为平行四边形,

BEDFCG

∴∠BPQ=DKM=CNH

BFDGCH

∴∠BQP=DMK=CHN

∴△BQP∽△DMK∽△CHN

2)∵BPDKCN

∴△ABP∽△ADK∽△ACN

由(1)知:△BQP∽△DMK∽△CHN

,则

,∴

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,双曲线y与直线yx交于AB两点,点Pab)在双曲线y上,且0a4

1)设PBx轴于点E,若a1,求点E的坐标;

2)连接PAPB,得到△ABP,若4ab,求△ABP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种高档蔬菜莼菜,其进价为16/kg.经市场调查发现:该商品的日销售量y(kg)是售价x(/kg)的一次函数,其售价、日销售量对应值如表:

售价(/)

20

30

40

日销售量()

80

60

40

(1)关于的函数解析式(不要求写出自变量的取值范围)

(2)为多少时,当天的销售利润 ()最大?最大利润为多少?

(3)由于产量日渐减少,该商品进价提高了/,物价部门规定该商品售价不得超过36/,该商店在今后的销售中,日销售量与售价仍然满足(1)中的函数关系.若日销售最大利润是864元,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ABC45°CDABDBE平分∠ABC,且BEACE,与CD相交于点FDHBCHBEG.下列结论:①BDCD;②AD+CFBD;③CEBF;④AEBG.其中正确的个数是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究

如图1,抛物线yax2+bx3x轴交于A(﹣20),B40)两点,与y轴交于点C

1)求抛物线的表达式;

2)点N是抛物线上异于点C的动点,若△NAB的面积与△CAB的面积相等,求出点N的坐标;

3)如图2,当POB的中点时,过点PPDx轴,交抛物线于点D.连接BD,将△PBD沿x轴向左平移m个单位长度(0m2),将平移过程中△PBD与△OBC重叠部分的面积记为S,求Sm的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】同一个圆的内接正方形和正三角形的边心距的比为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:

如图(a,AB在直线l的同侧,要在直线l上找一点C,使ACBC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.

1)实践运用:

如图(b),已知,⊙O的直径CD4,点A ⊙O 上,∠ACD=30°B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为

2)知识拓展:

如图(c),在Rt△ABC中,AB=10∠BAC=45°∠BAC的平分线交BC于点DEF分别是线段ADAB上的动点,求BE+EF的最小值,并写出解答过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+ca0)的部分图象如图所示,图象过点(﹣10),对称轴为直线x=2,下列结论:(14a+b=0;(28a+7b+2c0;(3)若点A(﹣3y1)、点B(﹣y2)、点Cy3)在该函数图象上,则y1y3y2;(4)若方程ax+1)(x5=3的两根为x1x2,且x1x2,则x1<﹣15x2.其中正确的结论有().

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:将一个大于0的自然数,去掉其个位数字,再把剩下的数加上原数个位数字的4倍,如果得到的和能被13整除,则称这个数是“一刀两断”数,如果和太大无法直接观察出来,就再次重复这个过程继续计算,例如,所以55263是“一刀两断”数.,所以3247不是“一刀两断”数.

1)判断5928是否为“一刀两断”数:_____(填是或否),并证明任意一个能被13整除的数是“一刀两断”数;

2)对于一个“一刀两断”数均为正整数),规定.若的千位数字满是,千位数字与十位数字相同,且能被65整除,求出所有满足条件的四位数中,的最大值.

查看答案和解析>>

同步练习册答案