精英家教网 > 初中数学 > 题目详情
18、如图,AD平分∠BAC,AC=AB,则△ABD≌△ACD.理由是:
两边一角对应相等且该角为两边的夹角
?△ABD≌△ACD(SAS).
分析:根据题意,证明△ABD≌△ACD,知道两边相等,而且相等的角为两边的夹角,所以根据SAS推出两三角形全等.
解答:解:∵AD平分∠BAC
∴∠CAD=∠BAD
∵AC=AB,AD=AD
∴△ABD≌△ACD(SAS)
∴理由是:两边一角对应相等且该角为两边的夹角.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,AB平分∠CAD,E为AB上一点,若AC=AD,则下列结论错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD为△ABC的角平分线,M为BC的中点,ME∥AD交BA的延长线于E,交AC于F.求证:BE=CF=
12
(AB+AC).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的角平分线,过点D作直线DF∥BA,交△ABC的外角平分线AF于点F,DF与AC交于点E.
求证:DE=EF.

查看答案和解析>>

科目:初中数学 来源:2012年人教版八年级上全等三角形2练习卷(解析版) 题型:选择题

如图,AB平分∠CAD,E为AB上一点,若AC=AD,则下列结论错误的是 (   )

A、BC=BD;          B、CE=DE;    C、BA平分∠CBD;   D、图中有两对全等三角形

 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AD为△ABC的角平分线,M为BC的中点,MEAD交BA的延长线于E,交AC于F.求证:BE=CF=
1
2
(AB+AC).
精英家教网

查看答案和解析>>

同步练习册答案