【题目】如图所示,PA、PB为⊙O的切线,M、N是PA、AB的中点,连接MN交⊙O点C,连接PC交⊙O于D,连接ND交PB于Q,求证:MNQP为菱形.
【答案】见解析
【解析】试题分析:连接OA,OB,OC,OD,OP. 由是的中点,根据三角形中位线的性质,可得MN∥BP.,又由PA、PB为的切线,可得AB⊥OP.可证得NM=MP,然后由射影定理与切割线定理证得O,C,D,N四点共圆,继而证得
MP∥NQ,则可得四边形MNQP是平行四边形,证得四边形MNQP是菱形.
试题解析:证明:连接OA,OB,OC,OD,OP.
∵AN=NB,AM=MP.
∴MN∥BP.
∵PA、PB为的切线,
∴AB⊥OP.
∴NM=MP,∠MNP=∠MPN,
在Rt△AOP中,由射影定理,得
由切割线定理,得
∴PNPO=PDPC,
∴O,C,D,N四点共圆,
∴∠PND=∠OCD,∠ONC=∠ODC,
∵OC=OD,
∴∠OCD=∠ODC,
∵∠MNP=∠ONC,
∴∠MNP=∠PND=∠MPN,
∴MP∥NQ,
∴四边形MNQP是平行四边形,
∴四边形MNQP是菱形.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与x轴、y轴分别交于A,B两点,以AB为边在第二象限内作正方形ABCD,则D点坐标是_______;在y轴上有一个动点M,当的周长值最小时,则这个最小值是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知2a-1与a+5是m的平方根,求m的值;
(2)若的整数部分为,小数部分为,求的值;
(3)若与|b-|互为相反数,解关于x的方程(2a+4)x2+b2+6=0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点C.抛物线经过A,C两点,且与x轴交于另一点B(点B在点A右侧).
(1)求抛物线的解析式及点B坐标;
(2)若点M是线段BC上的一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;
(3)试探究当ME取最大值时,在抛物线上、x轴下方是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠BAD=130°,∠B=∠D=90°,点E,F分别是线段BC,DC上的动点.当△AEF的周长最小时,则∠EAF的度数为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,∠ABC=90°,∠BAC=30°,将绕点A顺时针旋转一定的角度α得到,点B、C的对应点分别是E、D.
(1)如图1,当点E恰好在AC上时,求∠CDE的度数;
(2)如图2,若α=60°时,点F是边AC中点,求证:DF=BE;
(3)如图3,点B、C的坐标分别是(0,0),(0,2),点Q是线段AC上的一个动点,点M是线段AO上的一个动点,是否存在这样的点Q、M使得为等腰三角形且为直角三角形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数在第一象限的图象交于和B两点,与x轴交于点C.
(1)求反比例函数的解析式及点C的坐标.
(2)求△OCA的面积
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,动点E从点A出发,以每秒2个单位的速度沿A→D→A运动,动点G从点A出发,以每秒1个单位的速度沿A→B运动,当有一个点到达终点时,另一点随之也停止运动.过点G作FG⊥AB交AC于点F.设运动时间为t(单位:秒).以FG为一直角边向右作等腰直角三角形FGH,△FGH与正方形ABCD重叠部分的面积为S.
(1)当t=1.5时,S=________;当t=3时,S=________.
(2)设DE=y1,AG=y2,在如图所示的网格坐标系中,画出y1与y2关于t的函数图象.并求当t为何值时,四边形DEGF是平行四边形?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com