精英家教网 > 初中数学 > 题目详情

【题目】综合题

阅读下列材料:

配方法是初中数学中经常用到的一个重要方法,学好配方法对我们学习数学有很大的帮助,所谓配方就是将某一个多项式变形为一个完全平方式,变形一定要是恒等的,例如解方程,则,∴

.则有,∴.解得则有,∴.解得,根据以上材料解答下列各题:

.求的值.

.求的值.

.求的值.

表示的三边,且,试判断的形状,并说明理由.

【答案】(1);(2);(3)为等边三角形.理由见解析

【解析】

(1)运用完全平方公式将+=0变形为,即可求出a的值,(2)分成两个完全平方式的形式,根据非负数的性质求出x、y的值,再代入 即可解答,(3)先把左边配成完全平方式,右边化为常数,即可求解,(4)先将已知等式利用配方法变形,再利用非负数的性质解题即可.

移项得,

两边同时加上得,

配方得,

解得

为等边三角形.理由如下:

为等边三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,分别垂直平分,交两点,相交于点.

(1)=21cm,则的周长= ;(第一问直接写答案)

(2),求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的一元二次方程.

(1)试证明:无论取何值此方程总有两个实数根;

(2)若原方程的两根满足,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系满足:m=﹣2t+96.且未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=t+25(1≤t≤20t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=﹣t+40(21≤t<40t为整数).下面我们就来研究销售这种商品的有关问题

(1)请分别写出未来40天内,20天和后20天的日销售利润w(元)与时间t的函数关系式;

(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?

(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】给出下列说法,其中正确的是(

①关于的一元二次方程,若,则方程一定没有实数根;

②关于的一元二次方程,若,则方程必有实数根;

③若是方程的根,则

④若为三角形三边,方程有两个相等实数根,则该三角形为直角三角形.

A. ①② B. ①④ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为米的篱笆围成.已知墙长为米(如图),设这个苗圃园垂直于墙的一边长为米.

若苗圃园的面积为平方米,求

若平行于墙的一边长不小于米,这个苗圃园的面积有最大值吗?如果有,求出最大值;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形中,,点开始沿折线的速度运动,点开始沿边以的速度移动,如果点分别从同时出发,当其中一点到达时,另一点也随之停止运动,设运动时间为,当________时,四边形也为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是等边三角形,DBC边上一个动点(DBC均不重合),AD=AE,∠DAE=60°,连接CE

1)求证:ABD≌△ACE

2)求证:CE平分∠ACF

3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将沿着过中点的直线折叠,使点落在边上的处,称为第次操作,折痕的距离记为,还原纸片后,再将沿着过中点的直线折叠,使点落在边上的处,称为第次操作,折痕的距离记为;按上述方法不断操作下去,经过第次操作后得到的折痕,到的距离记为;若,则的值为________

查看答案和解析>>

同步练习册答案