【题目】在平面直角坐标系中,抛物线与轴的交点为,
(1)求抛物线的顶点坐标;
(2)若,
①求抛物线的解析式;
②)已知点,,将抛物线在的部分向上平移个单位得到图象,若图象与线段恰有个公共点,结合函数的图象,直接写出的取值范围.
科目:初中数学 来源: 题型:
【题目】甲、乙两组同时加工某种零件,甲组每小时加工80件,乙组加工的零件数量y(件)与时间x(小时)为一次函数关系,部分数据如下表所示.
x(小时) | 2 | 4 | 6 |
y(件) | 50 | 150 | 250 |
(1)求y与x之间的函数关系式;
(2)甲、乙两组同时生产,加工的零件合在一起装箱,每满340件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.
(1)若DG=2,求证四边形EFGH为正方形;
(2)若DG=6,求△FCG的面积;
(3)当DG为何值时,△FCG的面积最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列一组方程:;;;;它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.
若也是“连根一元二次方程”,写出k的值,并解这个一元二次方程;
请写出第n个方程和它的根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片ABCD,DC=8,AD=6.
(1)如图(1),点E在边AD上且AE=2,以点E为顶点作正方形EFGH,顶点F,H分别在矩形ABCD的边AB,CD上,连接CG,求∠HCG的度数;
(2)请从A、B两题中任选一题解答,我选择_____.
A.如图(2),甲同学把矩形纸片ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形MPNQ,判断并说明四边形MPNQ的形状.
B.如图(3),乙同学把(1)中的“正方形EFGH”改为“菱形EFGH”,其余条件不变,此时点G落在矩形ABCD的外部,已知△CGH的面积是4,求菱形EFGH的边长及面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠ABC=90°,BA=BC.将线段AB绕点A逆时针旋转90°得到线段AD,E是边BC上的一动点,连结DE交AC于点F,连结BF.
(1)求证:FB=FD;
(2)如图2,连结CD,点H在线段BE上(不含端点),且BH=CE,连结AH交BF于点N.
①判断AH与BF的位置关系,并证明你的结论;
②连接CN.若AB=2,请直接写出线段CN长度的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6cm2?
(2)在(1)中,△PQB的面积能否等于8cm2?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( )
A. 130° B. 150° C. 160° D. 170°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com