【题目】如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为 ,OP=1,求BC的长.
【答案】
(1)证明:连接OB,如图,
∵OP⊥OA,
∴∠AOP=90°,
∴∠A+∠APO=90°,
∵CP=CB,
∴∠CBP=∠CPB,
而∠CPB=∠APO,
∴∠APO=∠CBP,
∵OA=OB,
∴∠A=∠OBA,
∴∠OBC=∠CBP+∠OBA=∠APO+∠A=90°,
∴OB⊥BC,
∴BC是⊙O的切线;
(2)解:设BC=x,则PC=x,
在Rt△OBC中,OB= ,OC=CP+OP=x+1,
∵OB2+BC2=OC2,
∴( )2+x2=(x+1)2,
解得x=2,
即BC的长为2.
【解析】(1)首先依据垂直的定义可证明∠A+∠APO=90°,然后根据等腰三角形的性质可证明∠CBP=∠CPB,接下来,再依据根据对顶角相等得∠CPB=∠APO,然后可证明∠OBC=∠CBP+∠OBA=∠APO+∠A=90°,最后,依据切线的判定定理进行证明即可;
(2)设BC=x,则PC=x,在Rt△OBC中,根据勾股定理列方程求解即可.
科目:初中数学 来源: 题型:
【题目】如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB、∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC是∠AOB的“奇分线”,如图2,∠MPN=42°:
(1)过点P作射线PQ,若射线PQ是∠MPN的“奇分线”,求∠MPQ;
(2)若射线PE绕点P从PN位置开始,以每秒8°的速度顺时针旋转,当∠EPN首次等于180°时停止旋转,设旋转的时间为(秒).当为何值时,射线PN是∠EPM的“奇分线”?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).
(1)当﹣2<x≤3时,求y的取值范围;
(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,为直线上一动点(不与点重合),在的右侧作,使得,,连接.
(1)当点在线段上时,求证:;
(2)当时,若点在线段上,中最小角为,请求出的度数;
(3)在点的运动过程中,当垂直于的某边时,求的度数(用含的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于一次函数y=﹣2x+3,下列结论正确的是( )
A. 图象过点(1,﹣1) B. 图象经过一、二、三象限
C. y随x的增大而增大 D. 当x>时,y<0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com