精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:

(1)△AEF≌△CEB;
(2)AF=2CD.

【答案】
(1)证明:∵AD⊥BC,CE⊥AB,

∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,

∴∠CFD=∠B,

∵∠CFD=∠AFE,

∴∠AFE=∠B

在△AEF与△CEB中,

∴△AEF≌△CEB(AAS)


(2)证明:∵AB=AC,AD⊥BC,

∴BC=2CD,

∵△AEF≌△CEB,

∴AF=BC,

∴AF=2CD


【解析】(1)由AD⊥BC,CE⊥AB,易得∠AFE=∠B,利用全等三角形的判定得△AEF≌△CEB;(2)由全等三角形的性质得AF=BC,由等腰三角形的性质“三线合一”得BC=2CD,等量代换得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为原点,点B在x轴的正半轴上,D(0,8),将矩形OBCD折叠,使得顶点B落在CD边上的P点处.

(1)如图①,已知折痕与边BC交于点A,若OD=2CP,求点A的坐标.
(2)若图①中的点 P 恰好是CD边的中点,求∠AOB的度数.
(3)如图②,在(I)的条件下,擦去折痕AO,线段AP,连接BP,动点M在线段OP上(点M与P,O不重合),动点N在线段OB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E,试问当点M,N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度(直接写出结果即可

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.

(1)在图中画出与ABC关于直线l成轴对称的AB′C′;

(2)三角形ABC的面积为   

(3)在直线l上找一点P,使PB+PC的长最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线经过坐标原点O,点A(6,﹣6 ),且以y轴为对称轴.

(1)求抛物线的解析式;
(2)如图2,过点B(0,﹣ )作x轴的平行线l,点C在直线l上,点D在y轴左侧的抛物线上,连接DB,以点D为圆心,以DB为半径画圆,⊙D与x轴相交于点M,N(点M在点N的左侧),连接CN,当MN=CN时,求锐角∠MNC的度数;

(3)如图3,在(2)的条件下,平移直线CN经过点A,与抛物线相交于另一点E,过点A作x轴的平行线m,过点(﹣3,0)作y轴的平行线n,直线m与直线n相交于点S,点R在直线n上,点P在EA的延长线上,连接SP,以SP为边向上作等边△SPQ,连接RQ,PR,若∠QRS=60°,线段PR的中点K恰好落在抛物线上,求Q点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】⊙O是△ABC的外接圆,AB是直径,过 的中点P作⊙O的直径PG,与弦BC相交于点D,连接AG、CP、PB.
(1)如图1,求证:AG=CP;

(2)如图2,过点P作AB的垂线,垂足为点H,连接DH,求证:DH∥AG;

(3)如图3,连接PA,延长HD分别与PA、PC相交于点K、F,已知FK=2,△ODH的面积为2 ,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的三个顶点的坐标分别为:A(﹣2,3)、B(﹣6,0)、C(﹣1,0).

(1)将△ABC沿y轴翻折,画出翻折后的△A1B1C1 , 点A的对应点A1的坐标是
(2)△ABC关于x轴对称的图形△A2B2C2 , 直接写出点A2的坐标
(3)若△DBC与△ABC全等(点D与点A重合除外),请直接写出满足条件点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数

为何值时,yx的增大而减小?

为何值时,直线与y轴的交点在x轴下方?

为何值时,直线位于第二、三、四象限?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y= 与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).

(1)试确定这两函数的表达式;
(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;
(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离s(km)与慢车行驶时间t(h)之间的函数图象如图所示,则下列说法中:甲、乙两地之间的距离为560km快车速度是慢车速度的1.5倍;快车到达甲地时,慢车距离甲地60km相遇时,快车距甲地320km;正确的是( )

A. ①② B. ①③ C. ①④ D. ①③④

查看答案和解析>>

同步练习册答案