【题目】如图,平面直角坐标系中,O为坐标原点,抛物线y=﹣ ax2+ ax+3a(a≠0)与x轴交于A和点B(A在左,B在右),与y轴的正半轴交于点C,且OB=OC.
(1)求抛物线的解析式;
(2)若D为OB中点,E为CO中点,动点F在y轴的负半轴上,G在线段FD的延长线上,连接GE、ED,若D恰为FG中点,且S△GDE= ,求点F的坐标;
(3)在(2)的条件下,动点P在线段OB上,动点Q在OC的延长线上,且BP=CQ.连接PQ与BC交于点M,连接GM并延长,GM的延长线交抛物线于点N,连接QN、GP和GB,若角满足∠QPG﹣∠NQP=∠NQO﹣∠PGB时,求NP的长.
【答案】
(1)解:将y=0代入得:y=﹣ ax2+ ax+3a,
∵a≠0,
∴﹣ x2+ x+3=0.
解得:x1=﹣ ,x2=6.
∴A(﹣ ,0)、B(6,0).
∴OB=6.
∵将x=0代入抛物线的解析式得:y=3a,
∴C(0,3a).
∴OC=3a.
∵OB=0C,
∴3a=6.
解得:a=2,
∴抛物线的解析式为y=﹣ x2+ x+6;
(2)解:如图1所示:连接GB.
∵E、D分别是OC、0B的中点,
∴OE=3,OD=BD.
在△ODF和△GDB中,
,
∴△ODF≌△GDB,
∴BG=OF,∠GBD=∠FOD=90°,
∵S△EDG=S△EFG﹣S△EFD,
∴ EFOB﹣ EFOD= ,即3EF﹣ EF= ,解得:EF=9;
∴OF=EF﹣OE=9﹣3=6,
∴F(0,﹣6);
(3)解:如图2所示:过点P作PT∥y轴,交BC与点T,过点N作NR⊥y轴,垂足为R,NH⊥x轴于H,
∵TP∥OQ,
∴∠MPT=∠MQC,∠PTM=∠QCM,
∵OB=0C=6,
∴∠OCB=∠OBC=45°,
∴∠PBT=∠PTB=45°,
∴PT=PB=CQ,
在△PTM和△QCM中,
,
∴△PTM≌△QCM,
∴PM=QM,
∵GB⊥x轴,
∴BG∥y轴∥PT,
∴∠BGP=∠TPG.
∵∠QPG﹣∠NQO=∠NQP﹣∠PGB,
∴∠QPT+∠TPG﹣∠NQO=∠NQO+∠OQP﹣∠PCB,
∵∠QPT=∠OQP,∠TPG=∠PGB,
∴2∠TPG=2∠NQO,
∴∠TPG=∠NQO,
∴∠NQP=∠GPQ,
在△NMQ和△GMP中, ,
∴△NMQ≌△GMP,
∴NQ=GP,
在Rt△QNR和Rt△GPB中, ,
∴△QNR≌△GPB,
∴QM=BG=6,NR=PB=CQ.
设N(t,﹣ t2+ t+6).
∵QO=QC+CO=QR+RO,
∴QC=RO,
∴NR=RO,
∴﹣t=﹣ t2+ t+6,解得:t1=﹣2,t2=8(舍去).
∴N(﹣2,2),
∴NH=2,OH=NR=2.
∴PH=OB=6,
∴PN= =2 ,
∴线段NP的长为2 .
【解析】 (1)令y=0可求得点A,B的坐标,将x=0代入抛物线的解析式求得点C的坐标,然后根据OB=OC可求得a的值,从而得到抛物线的解析式;
(2)连接GB.首先依据SAS证明△ODF≌△GDB,从而得到BG=OF,接下来依据S△EDG=S△EFG﹣S△EFD可求得EF的长,从而得到BG的长,故此可得到点F的坐标;
(3)过点P作PT∥y轴,交BC与点T,过点N作NR⊥y轴,垂足为R,NH⊥x轴于H,首先证明PT=PB=CQ,然后依据SAS证明△PTM≌△QCM,于是得到PM=QM,再证明△NMQ≌△GMP,得到NQ=GP,再证明△QNR≌△GPB,得到NR=RO,从而列出关于t的方程,求得NR的长,最后在Rt△NHP中依据勾股定理得出结论。
【考点精析】通过灵活运用勾股定理的概念,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2即可以解答此题.
科目:初中数学 来源: 题型:
【题目】现有足够多的正方形和长方形的卡片,如图1所示,请运用拼图的方法,选取相应种类和数量的卡片,按要求回答下列问题.
(1)根据图2,利用面积的不同表示方法,写出一个代数恒等式:______________________;
(2)若要拼成一个长为,宽为的长方形,则需要甲卡片____张,乙卡片____张,丙卡片____张;
(3)请用画图结合文字说明的方式来解释:≠ (≠0,≠0).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.∠BAD=60°,AC平分∠BAD,AC=2,BN的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某医院研发了一种新药,试验药效时发现,如果成人按规定剂量服用,那么服药2小时后,血液中含药量最高,达每毫升6微克,接着逐渐衰减,10小时后血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示,当成人按规定剂量服药后:
(1)服药后几小时血液中含药量最高?达到每毫升血液中含药多少微克?
(2)在服药几个小时后,血液中的含药量逐渐升高?在几小时后,血液中的含药量逐渐衰减?
(3)服药后10小时时,血液中含药量是多少微克?
(4)服药几小时后即已无效?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】三角板是学习数学的重要工具,将一副三角板中的两块直角三角板的直角顶点按如图方式叠放在一起,当且点在直线的上方时,解决下列问题:(友情提示:,,.
(1)①若,则的度数为 ;
②若,则的度数为 ;
(2)由(1)猜想与的数量关系,并说明理由.
(3)这两块三角板是否存在一组边互相平行?若存在,请直接写出的角度所有可能的值(不必说明理由);若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,,.试说明直线与垂直.(请在下面的解答过程的空格内填空或在括号内填写理由).
理由:,(已知)
,
.
又,(已知)
.(等量代换)
,
.
,(已知)
,,
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示是某学校的平面图的一部分,其中A代表音乐楼,B代表实验楼,C代表图书馆,正方形网格中每个小正方形的边长为1,试结合图形回答下列问题:
(1)用(1,4)表示音乐楼A的位置,那么实验楼B和图书馆C的位置如何表示?
(2)三座楼房之间修三条路AC,AB,BC,且已知这三条路的长度存在下列关系:AC2+AB2=BC2.量得B到A的距离为3,若记东偏北方向为“+”,东偏南方向为“-”,则B点相对于A点的位置记作(-45°,3).那么,C点相对于A点的位置可如何表示?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若两个二次函数图象的顶点相同,开口大小相同,但开口方向相反,则称这两个二次函数为“对称二次函数”.
(1)请写出二次函数y=2(x﹣2)2+1的“对称二次函数”;
(2)已知关于x的二次函数y1=x2﹣3x+1和y2=ax2+bx+c,若y1﹣y2与y1互为“对称二次函数”,求函数y2的表达式,并求出当﹣3≤x≤3时,y2的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com