精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是(  )

A.AF=AE
B.△ABE≌△AGF
C.EF=
D.AF=EF

【答案】D
【解析】解:设BE=x,则CE=BC﹣BE=8﹣x,
∵沿EF翻折后点C与点A重合,
∴AE=CE=8﹣x,
在Rt△ABE中,AB2+BE2=AE2
即42+x2=(8﹣x)2
解得x=3,
∴AE=8﹣3=5,
由翻折的性质得,∠AEF=∠CEF,
∵矩形ABCD的对边AD∥BC,
∴∠AFE=∠CEF,
∴∠AEF=∠AFE,
∴AE=AF=5,
∴A正确;
在Rt△ABE和Rt△AGF中,

∴△ABE≌△AGF(HL),
∴B正确;
过点E作EH⊥AD于H,则四边形ABEH是矩形,
∴EH=AB=4,
AH=BE=3,
∴FH=AF﹣AH=5﹣3=2,
在Rt△EFH中,EF=2
∴C正确;
∵△AEF不是等边三角形,
∴EF≠AE,
故D错误;
故选:D.

设BE=x,表示出CE=8﹣x,根据翻折的性质可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根据翻折的性质可得 ∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF,过点E作 EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下列材料,并解决相关的问题.
按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1 , 依此类推,排在第n位的数称为第n项,记为an
一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.
(1)等比数列3,6,12,…的公比q为 ,第4项是
(2)如果一个数列a1 , a2 , a3 , a4 , …是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…=q.
所以:a2=a1q,a3=a2q=(a1q)q=a1q2 , a4=a3q=(a1q2)q=a1q3 , …
由此可得:an=(用a1和q的代数式表示).
(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算(﹣5sin20°)0﹣(﹣2+|﹣24|+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为(  )

A.-4
B.4
C.-2
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.

(1)求证:∠PCA=∠ABC;
(2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin∠P=,CF=5,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:

(1)BC的长;
(2)sin∠ADC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)

(1)求这7天内小申家每天用水量的平均数和中位数;
(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;
(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知半径为2的⊙O中,弦AC=2,弦AD=2 ,则∠COD的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以AB为直径的⊙O经过点C,过点C作⊙O的切线交AB的延长线于点P,D是⊙O上于点,且 = ,弦AD的延长线交切线PC于点E,连接AC.
(1)求∠E的度数;
(2)若⊙O的直径为5,sinP= ,求AE的长.

查看答案和解析>>

同步练习册答案