精英家教网 > 初中数学 > 题目详情

【题目】如图菱形ABOCAB,AC分别与⊙O相切于点D、E,若点DAB的中点则∠DOE=__________.

【答案】60°

【解析】AB,AC分别与⊙O相切于点D、E,可得∠BDO=ADO=AEO=90°,根据已知条件可得到BD=OB,在RtOBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE的度数.

【详解AB,AC分别与⊙O相切于点D、E,

∴∠BDO=ADO=AEO=90°,

∵四边形ABOC是菱形,∴AB=BO,A+B=180°,

BD=AB,

BD=OB,

RtOBD中,∠ODB=90°,BD=OB,cosB=∴∠B=60°,

∴∠A=120°,

∴∠DOE=360°-120°-90°-90°=60°,

故答案为:60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,EBC延长线上一点,∠ABC与∠ACE的平分线相交于点D,∠D15°,则∠A__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下表:

我们把表格中字母的和所得的多项式称为"'特征多项式",例如:1格的特征多项式 4x+y,第 2 格的特征多项式 8x+4y, 回答下列问题:

(1) 3 格的特征多项式 4 格的待征多项式 , n 格的特征多项式 .

(2)若第 m 格的特征多项式与多项式-24x+2y-5 的和不含有 x ,求此特征多项式”.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 x 满足 (9x)(x4)=4 (4x)2+(x9)2 的值.

9x=ax4=b (9x)(x4)=ab=4a+b=(9x)+(x4)=5

(9x)2+(x4)2=a2+b2=(a+b)22ab=522×4=13

请仿照上面的方法求解下面问题:

(1) x 满足 (5x)(x2)=2 (5x)2+(x2)2 的值

(2)已知正方形 ABCD 的边长为 x E F 分别是 AD DC 上的点,且 AE=1 CF=3 ,长方形 EMFD 的面积是 48 ,分别以 MF DF 作正方形,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,-3),点P是直线BC下方抛物线上的一个动点.

(1)求二次函数解析式;

(2)连接PO,PC,并将POC沿y轴对折,得到四边形.是否存在点P,使四边形为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;

(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在由边长为1个单位长度的小正方形组成的10×10网格中已知点O,A,B均为网格线的交点.

(1)在给定的网格中以点O为位似中心将线段AB放大为原来的2得到线段(点A,B的对应点分别为).画出线段;

(2)将线段绕点逆时针旋转90°得到线段.画出线段;

(3)以为顶点的四边形的面积是 个平方单位.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明大学毕业回家乡创业第一期培植盆景与花卉各50盆售后统计盆景的平均每盆利润是160花卉的平均每盆利润是19调研发现:

①盆景每增加1盆景的平均每盆利润减少2;每减少1盆景的平均每盆利润增加2;②花卉的平均每盆利润始终不变.

小明计划第二期培植盆景与花卉共100设培植的盆景比第一期增加x第二期盆景与花卉售完后的利润分别为W1,W2(单位元)

(1)用含x的代数式分别表示W1,W2;

(2)当x取何值时第二期培植的盆景与花卉售完后获得的总利润W最大最大总利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.

(1)求证:DF⊥AC;

(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点为直线上一点,过点作射线,使将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.

1)将图1中的三角形板绕点按照顺时针方向旋转至图2的位置,使得落在射线上,此时旋转的角度是____°;

2)继续将图2中的三角板绕点按顺时针方向旋转至图3的位置,使得的内部,则_____________°;

3)在上述直角板从图1旋转到图3的位置的过程中,若三角板绕点按每秒钟的速度旋转,当恰好为的平分线时,此时,三角板绕点运动时间为__秒,并说明理由.

查看答案和解析>>

同步练习册答案