【题目】如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,-3),点P是直线BC下方抛物线上的一个动点.
(1)求二次函数解析式;
(2)连接PO,PC,并将△POC沿y轴对折,得到四边形.是否存在点P,使四边形为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.
【答案】解:(1)将B、C两点的坐标代入,得
, 解得。
∴二次函数的解析式为。
(2)存在。如图1,假设抛物线上存在点P,使四边形为菱形,连接交CO于点E。
∵四边形为菱形, K∴PC=PO,且PE⊥CO。
∴OE=EC=,即P点的纵坐标为。
由解得:
(不合题意,舍去)。
∴存在这样的点,此时P点的坐标为(,)。
(3)如图2,连接PO,作PM⊥x于M,PN⊥y于N。设P点坐标为(x,),
由=0,得点A坐标为(-1,0)。
∴AO=1,OC=3, OB=3,PM=,PN=x。
∴S四边形ABPC=++
=AO·OC+OB·PM+OC·PN
=×1×3+×3×()+×3×x
==。
∴当x=时,四边形ABPC的面积最大.此时P点坐标为(,),四边形ABPC的最大面积为。
【解析】
试题(1)直接把B(3,0)、C(0,-3)代入可得到关于b、c的方程组,解方程组求得b,c,则从而求得二次函数的解析式。
(2)假设抛物线上存在点P,使四边形为菱形,连接交CO于点E,则PO=PC,根据翻折的性质得OP′=OP,CP′=CP,易得四边形POP′C为菱形,又E点坐标为(0, ),则点P的纵坐标为,把y=
代入可求出对应x的值,然后确定满足条件的P点坐标。
(3)由S四边形ABPC=++求出S四边形ABPC关于P点横坐标的函数表达式,应用二次函数的最值原理求解。
科目:初中数学 来源: 题型:
【题目】如图 1,两个完全相同的三角形纸片 ABC 和 DEC 重合放置,其中∠C=90°,∠B=∠E=30°.
⑴ 操作发现:如图 2,固定△ABC,使△DEC 绕点 C 旋转,当点 D 恰好落在 AB 边上时, 填空:
①线段 DE 与 AC 的位置关系是 ;
②设△BDC 的面积为 S1,△AEC 的面积为 S2,则 S1 与 S2 的数量关系是 .
⑵ 猜想论证
当△DEC 绕点 C 旋转到如图 3 所示的位置时,请猜想(1)中 S1 与 S2 的数量关系是否仍 然成立?若成立,请证明;若不成立,请说明理由.
⑶ 拓展探究
已知∠ABC=60°,BD 平分∠ABC,BD=CD,BE=6,DE∥AB 交 BC 于点 E(如图 4).若在射线 BA 上存在点 F,使 S△DCF=S△BDE,请求相应的 BF 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t﹣5t2(0≤t≤4).
(1)当t=3时,求足球距离地面的高度;
(2)当足球距离地面的高度为10米时,求t;
(3)若存在实数t1,t2(t1≠t2)当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A、B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC,若OA=5,AB=6,则点B到AC的距离为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,方格图中每个小正方形的边长为1,点A、B、C都是格点.
(1)画出△ABC关于直线MN对称的△A1B1C1;
(2)直接写出AA1的长度;
(3)如图2,A、C是直线MN同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使AD+DC最小.(保留作图痕迹)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】自行车厂某周计划生产2100辆电动车,平均每天生产电动车300辆.由于各种原因,实际每天的生产量与计划每天的生产量相比有出入,下表是该周的实际生产情况(超产记为正、减产记为负,单位:辆):
(1)该厂星期一生产电动车 辆;
(2)生产量最多的一天比生产量最少的一天多生产电动车 辆;
(3)该厂实行记件工资制,每生产一辆车可得60元,那么该厂工人这一周的工资总额是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某家具厂生产一种课桌和椅子,课桌每张定价200 元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.
(1)若x>100,请用含x的代数式分别把两种方案的费用表示出来;
(2)若x=300,如果两种方案可以同时使用,作为一种新的方案,请帮助学校设计一种最省钱的方案
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:
(1)∠BOC的度数;
(2)BE+CG的长;
(3)⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com