精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点A是反比例函数y=的图象在第一象限上的动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC使点C落在第二象限,且边BCx轴于点D,若△ACD与△ABD的面积之比为1:2,则点C的坐标为(  )

A. (﹣3,2 B. (﹣5, C. (﹣6, D. (﹣3,2)

【答案】C

【解析】

CMODMAEODEDFABF连接CO根据等高的三角形的面积比等于底边的比可得DB=2CD由△ABC是等边三角形AO=BO可得COABCO=AO=BODFCO可得OF=OBDF=OB根据△AOE∽△DOF 可得AE=2OE根据AE×OE=2可求A点坐标再根据△OCM∽△AOE可求C点坐标

如图CMODMAEODEDFABF连接CO

根据题意得AO=BO

SACDSADB=12CDDB=12DB=2CD

∵△ABC为等边三角形且AO=BO∴∠CBA=60°,COABDFABDFCO,∴DF=COBF=BOFO=BO

∵∠CBA=60°,COABCO=BODF=BO

∵∠DOF=AOEDFO=AEO=90°,∴△DFO∽△AOE,∴AE=2OE

∵点A是反比例函数y=的图象在第一象限上的动点AE×OE=2AE=2OE=1

∵∠COM+∠AOE=90°,AOE+∠EAO=90°,∴∠COM=EAO且∠CMO=AEO=90°,∴△OCM∽△AOE,∴CM=MO=6

M在第二象限M(﹣6).

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:

(1)轿车到达乙地后,货车距乙地多少千米?

(2)求线段CD对应的函数解析式.

(3)轿车到达乙地后,马上沿原路以CD段速度返回,求货车从甲地出发后多长时间再与轿车相遇(结果精确到0.01).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1,2,3,…,n个角,如第一步从0号角移动到第1号角,第二步从第1号角移动到第3号角,第三步从第3号角移动到第6号角,….若这枚棋子不停地移动下去,则这枚棋子永远不能到达的角的个数是( )

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学农期间我们完成了每日一题,进一步研究了角的平分线. 工人师傅常用角尺平分一个任意角. 作法如下:

如图,∠AOB 是一个任意角,在边 OAOB 上分别取 OM=ON 移动角尺,使角尺两边相同的刻度分别与 MN 重合. 过角尺顶点 C 的射线 OC 便是∠AOB 的平分线. 我们发现利用 SSS 证明两个三角形全等,从而证明∠AOC=BOC.

学习了轴对称的知识后,我们知道角是轴对称图形,角平分线 所在直线就是它的对称轴,爱动脑筋的小慧同学利用轴对称图形的性质发现了一种画角平分线的方法.

方法如下:如图 1,将两个全等的三角形纸片△DEF 和△MNL 的一组对应边分别与∠AOB 的一边共线,同时这条边所对顶点落在∠AOB 的另一条边上,则△DEF 和△MNL 的另一组对应边的交点 P 在∠AOB 的平分线上.

1)小慧的做法正确吗?说明理由:

小旭说:利用轴对称的性质,我只用刻度尺就可以画角平分线.(提示:刻度尺可以度量出相等的线段)

2)请你和小旭一样,只用刻度尺画出图 2 中∠QRS 的角平分线.(保留作图痕迹,不写作法)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,设点A(0,4)、B(3,8).若点P(x,0),使得∠APB最大,则x=(  )

A. 3 B. 0 C. 4 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰Rt△ABC中,∠ACB=90°,ACCBFAB边上的中点,点DE分别在ACBC边上运动,且始终保持ADCE.连接DEDFEF

(1)求证:△ADF≌△CEF

(2)试证明△DFE是等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k0)的图象与反比例函双y=(m0)的阳象交于点c(n,3),与x轴、y轴分别交于点A、B,过点CCMx轴,垂足为M,若tanCAM=,OA=2.

(1)求反比例函数和一次函数的解析式;

(2)点D是反比例函数图象在第三象限部分上的一点,且到x轴的距离是3,连接AD、BD,求△ABD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E是正方形ABCDCD边上一点,以点A为中心把△ADE顺时针旋转90°。

(1)在图中画出旋转后的图形;

(2)若旋转后E点的对应点记为M,点FBC上,且∠EAF=45°,连接EF。

①求证:△AMF≌△AEF;

②若正方形的边长为6,AE=,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=5,AC=3,BC=4,将△ABCA逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为(  )

A. π﹣6 B. π C. π﹣3 D.

查看答案和解析>>

同步练习册答案