精英家教网 > 初中数学 > 题目详情

【题目】如图,△ ABC中,ABBCMNBC边上的两点,并且∠BAM∠CANMNAN,则∠MAC    度.

【答案】60

【解析】

∠CAN=x∠MAN=y,先表示出∠C2x+y,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠ANM,再根据等边对等角的性质求出∠AMN=∠MAN,然后利用三角形的内角和定理列式求出x+y的度数,也就是∠MAC的度数.

解:设∠CAN=x∠MAN=y

∵AB=BC∠BAM=∠CAN

∴∠C=∠BAC=2x+y

∴∠ANM=x+2x+y=3x+y

∵MN=AN

∴∠AMN=∠MAN

△AMN中,2y+3x+y=180°

解得x+y=60°

∠MAC=60°

故填60

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,Rt△ABC≌Rt△DFE,其中∠ACB=∠DFE=90°,BCEF

(1)若两个三角形按图2方式放置,ACDF交于点O,连接ADBO,则AFCD的数量关系为   BOAD的位置关系为   

(2)若两个三角形按图3方式放置,其中CB(D)、F在一条直线上,连接AEMAE中点,连接FMCM.探究线段FMCM之间的关系,并证明;

(3)若两个三角形按图4方式放置,其中BC(D)、F在一条直线上,点GH分别为FCAC的中点,连接GHBE交于点K,求证:BKEK

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,过点D作⊙O的切线交AC的延长线于点E,DE=4,CE=2.

(1)求证:DE⊥AE;

(2)求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】6分现有5个质地、大小完全相同的小球上分别标有数字﹣1,﹣2,1,2,3先将标有数字﹣2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里现分别从两个盒子里各随即取出一个小球

1请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;

2求取出的两个小球上的数字之和等于0的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B-20),点C80),与y轴交于点A

1)求二次函数y=ax2+bx+4的表达式;

2)连接ACAB,若点N在线段BC上运动(不与点BC重合),过点NNM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;

3)连接OM,在(2)的结论下,求OMAC的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一个抛物线型蔬菜大棚,将其截面放在如图所示的平面直角坐标系中,抛物线可以用函数y=ax2+bx来表示.已知大棚在地面上的宽度OA8米,距离O2米处的棚高BC米.

(1)求该抛物线的函数关系式;

(2)若借助横梁DE建一个门,要求门的高度不低于1.5米,则横梁DE的宽度最多是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,B=CAB=8厘米,BC=6厘米,点DAB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3).

1)用的代数式表示PC的长度;

2)若点PQ的运动速度相等,经过1秒后,BPDCQP是否全等,请说明理由;

3)若点PQ的运动速度不相等,当点Q的运动速度a为多少时,能够使BPDCQP全等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,E=115°,则∠BAE的度数为何?(  )

A. 115 B. 120 C. 125 D. 130

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在△ABC与△ADE中,AB=ACAD=AE,∠BAC=DAE=40°,试探究线段BDCE的数量关系与直线BDCE相交构成的锐角的度数.

1)如图①,当点DE分别在△ABC的边ABAC上时,BDCE的数量关系是___________,直线BDCE相交构成的锐角的度数是_____________.

2)将图①中△DAE绕点A逆时针旋转一个角度到图②的位置,则(1)中的两个结论是否仍然成立?说明理由.

3)将图②中△DAE继续绕点A按逆时针方向继续旋转到点D落在CA的延长线时,请画出图形,并直接写出(1)中的两个结论是否仍然成立.

查看答案和解析>>

同步练习册答案