精英家教网 > 初中数学 > 题目详情

【题目】如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2 , 腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为cm.

【答案】8
【解析】解:连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴SABC= BCAD= ×4×AD=12,解得AD=6cm,
∵EF是线段AB的垂直平分线,
∴点B关于直线EF的对称点为点A,
∴AD的长为BM+MD的最小值,
∴△BDM的周长最短=(BM+MD)+BD=AD+ BC=6+ ×4=6+2=8cm.
故答案为:8.

连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】a-3<b+1,可得到结论(  )

A. a<b B. a+3<b-1 C. a-1<b+3 D. a+1<b-3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一元二次方程x26x+c=0有一个根为2,则c=__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.

(1)在图1中画出钝角△ABC,使它的面积为6(画一个即可);

(2)在图2中画出△DEF,使它的三边长分别为、5(画一个即可).并且直接写出此时三角形DEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1
(1)当∠A为70°时, ∵∠ACD﹣∠ABD=∠
∴∠ACD﹣∠ABD=°
∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线
∴∠A1CD﹣∠A1BD= (∠ACD﹣∠ABD)
∴∠A1=°;
(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2 , ∠A2BC与A2CD的平分线交于A3 , 如此继续下去可得A4、…、An , 请写出∠A与∠An的数量关系
(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=
(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ab<cba________c(“>”“<”“=”).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).

(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1 , 图中画出△A1B1C1 , 平移后点A的对应点A1的坐标是
(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是
(3)将△ABC向左平移2个单位,则△ABC扫过的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】己知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.
(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.

①求证:∠FEA=∠FCA;
②猜想线段FE,FA,FD之间的数量关系,并证明你的结论:
(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的同侧时,利用图2画出图形探究线段FE,FA,FD之间的数量关系,并直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,点D、E分别是BC边、AB边上的点,且BE=CD,连接AD、CE交于点F,过A作AH⊥CE于H,

(1)求证:∠BCE=∠CAD;
(2)直接写出∠CFD的度数;并写出线段AF与线段HF的数量关系.(无需解答过程)

查看答案和解析>>

同步练习册答案