【题目】如图,二次函数y=x2+bx+c的图象与x轴交于A.B两点,且A点坐标为(3,0),经过B点的直线y=x-1交抛物线于点D.
(1)求B点坐标和抛物线的解析式
(2)点D的坐标
(3)过x轴上点E(a,0)(E点在B点的右侧)作直线EF∥BD,交抛物线于点F,是否存在实数a使四边形BDFE是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.
【答案】(1) y=x2+2x3,(1,0);(2)点D坐标(-2,-3);(3)存在实数a=3,使四边形BDFE是平行四边形
【解析】
(1)设抛物线为y=x2+bx+c,求出B点的坐标,把点A(3,0),B(1,0)代入解析式中求出 b,c的值即可求出抛物线的解析式;
(2)求出抛物线与直线y=x-1的交点,然后把x=-2代入直线y=x-1即可求出D的坐标;
(3)得到用a表示的EF的解析式,跟二次函数解析式组成方程组,得到含y的一元二次方程,进而根据y=-3求得合适的a的值即可.
(1) B点在直线y=x-1上
令y=0,则x=1
∴B的坐标为(1,0)
由题意知将A(3,0),B(1,0)的坐标代入y=x2+bx+c得,
,
解得: ,
∴y=x2+2x3
(2)由(1)知y=x2+2x3,
得:
解得:
∴D坐标(-2,y)
∵直线B的解析式为y=x-1,
解得:y=-3
∴点D坐标(-2,-3)
(3)如图:
∵直线B的解析式是y=x1,且EF∥BD,
∴直线EF的解析式为:y=xa,
若四边形BDFE是平行四边形,
则DF∥x轴,
∴D、F两点的纵坐标相等,即点F的纵坐标为3.
由 ,
由②得,x=y+a,代入方程①得,
y2+(2a+1)y+a2+2a3=0,
解得:
令=-3
解得:a1=1,a2=3.
当a=1时,E点的坐标(1,0),这与B点重合,舍去;
∴当a=3时,E点的坐标(3,0),符合题意。
∴存在实数a=3,使四边形BDFE是平行四边形.
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=x﹣2与反比例函数y=的图象交于A、B两点.
(1)求A、B两点的坐标;
(2)观察图象,直接写出一次函数值小于反比例函数值的x的取值范围;
(3)坐标原点为O,求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,二次函数 y=ax2+bx+2 的图象与 x 轴交于 A(﹣3,0),B(1,0)两点,与 y 轴交于点C.
(1)求这个二次函数的关系解析式 ,x 满足什么值时 y﹤0 ?
(2)点 p 是直线 AC 上方的抛物线上一动点,是否存在点 P,使△ACP 面积最大?若存在,求出点 P的坐标;若不存在,说明理由
(3)点 M 为抛物线上一动点,在 x 轴上是否存在点 Q,使以 A、C、M、Q 为顶点的四边形是平行四边形?若存在,直接写出点 Q 的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,解决材料后的问题:
材料一:对于实数x、y,我们将x与y的“友好数”用f(x,y)表示,定义为:f(x)=,例如17与16的友好数为f(17,16)==.
材料二:对于实数x,用[x]表示不超过实数x的最大整数,即满足条件[x]≤x<[x]+1,例如:
[﹣1.5]=[﹣1.6]=﹣2,[0]=[0.7]=0,[2.2]=[2.7]=2,……
(1)由材料一知:x2+2与1的“友好数”可以用f(x2+2,1)表示,已知f(x2+2,1)=2,请求出x的值;
(2)已知[a﹣1]=﹣3,请求出实数a的取值范围;
(3)已知实数x、m满足条件x﹣2[x]=,且m≥2x+,请求f(x,m2﹣m)的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将顶点为P(1,-2),且过原点的抛物线y的一部分沿x轴翻折并向右平移2个单位长度,得到抛物线y1,其顶点为P1,然后将抛物线y1沿x轴翻折并向右平移2个单位长度,得到抛物线y2,其顶点为P2;,如此进行下去,直至得到抛物线y2019,则点P2019坐标为 _______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=6,E为CD上一动点,AE交BD于F,过F作FH⊥AE交BC于点H,过H作HG⊥BD于G,连结AH.在以下四个结论中:①AF=HE;②∠HAE=45°;③FC=2;④△CEH的周长为12.其中正确的结论有_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于的一元二次方程,给出下列说法:①若,则方程必有两个实数根;②若,则方程必有两个实数根;③若,则方程有两个不相等的实数根;④若,则方程一定没有实数根.其中说法正确的序号是( )
A. ①②③B. ①②④
C. ①③④D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与x轴交于点M,与y轴交于点A,过点A作,交x轴于点B,以AB为边在AB的右侧作正方形ABCA1,延长A1C交x轴于点B1,以A1B1为边在A1B1的右侧作正方形A1B1C1A2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA1,A1B1C1A2,…,中的阴影部分的面积分别为S1,S2,…,Sn,则Sn可表示为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将矩形OABC如图放置,O为原点,若点A的坐标是(﹣1,2),点B的坐标是(2,),则点C的坐标是( )
A. (4,2)B. (2,4)C. (,3)D. (3,)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com