精英家教网 > 初中数学 > 题目详情

【题目】如图,直线x轴交于点M,与y轴交于点A,过点A,交x轴于点B,以AB为边在AB的右侧作正方形ABCA1,延长A1Cx轴于点B1,以A1B1为边在A1B1的右侧作正方形A1B1C1A2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA1A1B1C1A2,…,中的阴影部分的面积分别为S1S2,…,Sn,则Sn可表示为_____

【答案】

【解析】

因为所有的正方形都相似,所以只要求出第一个阴影正方形的面积和第二个阴影正方形与第一个阴影正方形的相似比即可依此规律求解.根据题意和正方形的性质可得,所以它们的正切相等,等于,据此可求出OB的长,再用OAOB即为第一个阴影正方形的边长,于是S1可得;同理可求得AB的关系,进而可求得的关系;以此规律类推可求得SnS1的关系,整理即得答案.

解:在直线中,当时,;当时,

,∴

,∴

正方形ABCA1中的四个小正方形都与△AOB全等,

∴第一个阴影正方形的边长为:

同理:

同理可得,…,

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB6cmBC12cm,点P从点A沿边AB向点B1cm/s的速度移动;同时,点Q从点B沿边BC向点C2cm/s的速度移动.问:

1)几秒时PBQ的面积等于8cm2

2)几秒时PDQ的面积等于28cm2

3)几秒时PQDQ

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=x2+bx+c的图象与x轴交于A.B两点,A点坐标为(3,0),经过B点的直线y=x-1交抛物线于点D.

(1)B点坐标和抛物线的解析式

(2)D的坐标

(3)x轴上点E(a,0)(E点在B点的右侧)作直线EFBD,交抛物线于点F,是否存在实数a使四边形BDFE是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,回答问题:

如图,

Ax1y1),点Bx2y2),以AB为斜边作RtABC,则Cx2y1),于是,所以,反之,可将代数式的值看作点(x1y1)到点(x2y2)的距离.

例如:

故代数式的值看作点(xy)到点(1-1)的距离.

已知:代数式

1)该代数式的值可看作点(xy)到点 的距离之和.

2)求出这个代数式的最小值,

3)在(2)的条件下求出此时yx之间的函数关系式并写出x的值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】长城汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.

1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求yx的函数关系式;

2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润45万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为菱形,以AD为直径作AB于点F,连接DB于点HEBC上的一点,且,连接DE

1)求证:DE的切线.

2)若,求的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x1x2是一元二次方程2x2-2x+m+1=0的两个实根.

(1)求实数m的取值范围;

(2)如果m满足不等式7+4x1x2>x12+x22,且m为整数.求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCDDEFG都是正方形,边长分别为mnmn).坐标原点OAD的中点,ADEy轴上.若二次函数yax2的图象过CF两点,则_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在国家政策的宏观调控下,某市的商品房成交均价由今年3月份的14 000/m2下降到5月份的12 600/m2.

(1)45两月平均每月降价的百分率约是多少?(参考数据:≈0.95)

(2)如果房价继续跌落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌跛10 000/m2?请说明理由.

查看答案和解析>>

同步练习册答案