【题目】如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动.问:
(1)几秒时△PBQ的面积等于8cm2;
(2)几秒时△PDQ的面积等于28cm2;
(3)几秒时PQ⊥DQ.
【答案】(1)2秒或4秒后△PBQ的面积等于8cm2;
(2)2秒或4秒后△PDQ的面积等于28cm2;
(3)秒或6秒后PQ⊥DQ.
【解析】
(1)表示出PB,QB的长,利用△PBQ的面积等于8cm2列式求值即可;
(2)设出发秒x时△DPQ的面积等于28平方厘米,根据三角形的面积公式列出方程,再解方程即可;
(3)如果PQ⊥DQ,则∠DQP为直角,得出△BPQ∽△CQD,即可得出,再设AP=x,QB=2x,代入求出x即可.
(1)设x秒后△PBQ的面积等于8cm2.
则AP=x,QB=2x.
∴PB=6﹣x.
∴×(6﹣x)2x=8,
解得x1=2,x2=4,
答:2秒或4秒后△PBQ的面积等于8cm2;
(2)设出发秒x时△DPQ的面积等于8cm2.
∵S矩形ABCD﹣S△APD﹣S△BPQ﹣S△CDQ=S△DPQ
∴12×6﹣×12x﹣×2x(6﹣x)﹣×6×(12﹣2x)=28,
化简整理得 x2﹣6x+8=0,
解得x1=2,x2=4,
答:2秒或4秒后△PDQ的面积等于28cm2;
(3)设x秒后PQ⊥DQ时,则∠DQP为直角,
∴△BPQ∽△CQD,
∴,
设AP=x,QB=2x.
∴,
∴2x215x+18=0,
解得:x=或6,
经检验x=是原分式方程的根,x=6不是原分式方程的根,
当x=6时,P点到达B点、Q点到达C点,此时PQ⊥DQ.
答:秒或6秒后PQ⊥DQ.
科目:初中数学 来源: 题型:
【题目】为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.
(1)本次接受问卷调查的学生有________名.
(2)补全条形统计图.
(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.
(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=x﹣2与反比例函数y=的图象交于A、B两点.
(1)求A、B两点的坐标;
(2)观察图象,直接写出一次函数值小于反比例函数值的x的取值范围;
(3)坐标原点为O,求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm.点P从点A出发,沿AB边向点B以1cm/s的速度移动;点Q从点B出发,沿BC边向点C以2cm/s的速度移动,设P,Q同时出发,问:
(1)经过几秒后,点P,Q之间距离最小?最小距离是多少?
(2)经过几秒后,△PBQ的面积最大?最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新定义:关于x的一元二次方程a1(x﹣m)2+k=0与a2(x﹣m)2+k=0称为“同族二次方程”.如2(x﹣3)2+4=0与3(x﹣3)2+4=0是“同族二次方程”.现有关于x的一元二次方程2(x﹣1)2+1=0与(a+2)x2+(b﹣4)x+8=0是“同族二次方程”,那么代数式ax2+bx+2023能取的最小值是( )
A. 2016B. 2018C. 2023D. 2028
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2cm/s的速度向D移动.
(1)P、Q两点从出发开始到几秒时,四边形APQD为长方形?
(2)P、Q两点从出发开始到几秒时?四边形PBCQ的面积为33cm2;
(3)P、Q两点从出发开始到几秒时?点P和点Q的距离是10cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,二次函数 y=ax2+bx+2 的图象与 x 轴交于 A(﹣3,0),B(1,0)两点,与 y 轴交于点C.
(1)求这个二次函数的关系解析式 ,x 满足什么值时 y﹤0 ?
(2)点 p 是直线 AC 上方的抛物线上一动点,是否存在点 P,使△ACP 面积最大?若存在,求出点 P的坐标;若不存在,说明理由
(3)点 M 为抛物线上一动点,在 x 轴上是否存在点 Q,使以 A、C、M、Q 为顶点的四边形是平行四边形?若存在,直接写出点 Q 的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,解决材料后的问题:
材料一:对于实数x、y,我们将x与y的“友好数”用f(x,y)表示,定义为:f(x)=,例如17与16的友好数为f(17,16)==.
材料二:对于实数x,用[x]表示不超过实数x的最大整数,即满足条件[x]≤x<[x]+1,例如:
[﹣1.5]=[﹣1.6]=﹣2,[0]=[0.7]=0,[2.2]=[2.7]=2,……
(1)由材料一知:x2+2与1的“友好数”可以用f(x2+2,1)表示,已知f(x2+2,1)=2,请求出x的值;
(2)已知[a﹣1]=﹣3,请求出实数a的取值范围;
(3)已知实数x、m满足条件x﹣2[x]=,且m≥2x+,请求f(x,m2﹣m)的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与x轴交于点M,与y轴交于点A,过点A作,交x轴于点B,以AB为边在AB的右侧作正方形ABCA1,延长A1C交x轴于点B1,以A1B1为边在A1B1的右侧作正方形A1B1C1A2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA1,A1B1C1A2,…,中的阴影部分的面积分别为S1,S2,…,Sn,则Sn可表示为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com