分析 (1)利用已知条件证明△ABD≌△ACE,利用全等三角形的对应边相等得到BD=CE.
(2)由(1)知△ABD≌△ACE,得到AD=AE,由BE=AB+AE,利用线段的等量代换,即可解答.
解答 解:(1)∵CE⊥BF,
∴∠EFB=90°
∴∠E+∠ABD=90°,
又∵∠BAC=90°,
∴∠EAC=∠BAD=90°
∴∠E+∠ECA=90°,
∴∠ABD=∠ECA,
在△BAD和△ACE中,
$\left\{\begin{array}{l}{∠ABD=∠ECA}\\{AB=AC}\\{∠BAD=∠EAC}\end{array}\right.$,
∴△ABD≌△ACE,
∴BD=CE.
(2)由(1)知△ABD≌△ACE
∴AD=AE,
又∵AB=AC,
∴AB+AE=AC+AD,
即BE=AC+AD.
点评 本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明△ABD≌△ACE.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com