【题目】已知,如图,.
(1)请以AB、BC为邻边用两种不同的方法画平行四边形ABCD,并说明此画法的合理性(不写作法,保留作图痕迹.);
(2)在上述画出的平行四边形中,若,,,求对角线BD的长.
【答案】解:(1)详见解析;(2)
【解析】
(1)可以根据两组对边相等的四边形是平行四边形和对角线互相平分的四边形是平行四边形作图;
(2)先解直角三角形求出AC的长,据此可得AO的长,利用勾股定理求出BO的长,继而可得BD.
解:(1)如图1,作AD=BC,CD=AB,
则四边形ABCD是平行四边形;
如图2,作AC的垂直平分线交AC中点O,连接BO,并延长BO到D,使BO=DO,连接AD、CD即可得.
∵AO=CO、BO=DO,
∴四边形ABCD是平行四边形.
(2)∵AB⊥AC,
∴△ABC是直角三角形,
∵AB=2,∠ABC=60°,
∴BC=4,AC=2,
则AO=AC=,
∴BO==,
则BD=2BO=2.
科目:初中数学 来源: 题型:
【题目】如图所示,抛物线y=﹣x﹣4与x轴交于点A、B,与y 轴相交于点C.
(1)求直线BC的解析式;
(2)将直线BC向上平移后经过点A得到直线l:y=mx+n,点D在直线l上,若以A、B、C、D为顶点的四边形是平行四边形,求出点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)请判断AB与CD的位置关系并说明理由;
(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并说明理由;
(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的顶点A、B分别落在x轴、y轴的正半轴上,顶点C在第一象限,BC与x轴平行.已知BC=2,△ABC的面积为1.
(1)求点C的坐标.
(2)将△ABC绕点C顺时针旋转90°,△ABC旋转到△A1B1C的位置,求经过点B1的反比例函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB和直线CD相交于点O,OF平分∠COE,过点O作OG⊥OF.
(1)若∠AOE=80°,∠COF=22°,则∠BOD= ;
(2)若∠COE=40°,试说明:OG平分∠DOE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A、B两地在数轴上相距20米,A地在数轴上表示的点为-8,小乌龟从A地出发沿数轴往B地方向前进,第一次前进1米,第二次后退2米,第三次再前进3米,第四次又后退4米,……,按此规律行进,(数轴的一个单位长度等于1米)
(1)求B地在数轴上表示的数;
(2)若B地在原点的左侧,经过第五次行进后小乌龟到达点P,第六次行进后到达点Q,则点P和点Q到点A的距离相等吗?请说明理由;
(3)若B地在原点的右侧,那么经过30次行进后,小乌龟到达的点与点B之间的距离是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上点A表示的数为﹣3,点B表示的数为3,若在数轴上存在点P,使得AP+BP=m,则称点P为点A和B的“m级精致点”,例如,原点O表示的数为0,则AO+BO=3+3=6,则称点O为点A和点B的“6级精致点”,根据上述规定,解答下列问题:
(1)若点C轴在数轴上表示的数为﹣5,点C为点A和点B的“m级精致点”,则m= ;
(2)若点D是数轴上点A和点B的“8级精致点”,求点D表示的数;
(3)如图,数轴上点E和点F分别表示的数是﹣2和4,若点G是点E和点F的“m级精致点”,且满足GE=3GF,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示
分组 | 频数 |
4.0≤x<4.2 | 2 |
4.2≤x<4.4 | 3 |
4.4≤x<4.6 | 5 |
4.6≤x<4.8 | 8 |
4.8≤x<5.0 | 17 |
5.0≤x<5.2 | 5 |
(1)求活动所抽取的学生人数;
(2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;
(3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是( )
A. 3 B. 5 C. 4 D. 1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com