如图1,AB为⊙O的直径,C为⊙O上一点,作AD⊥CD,垂足为D.
(1)若直线CD与⊙O相切于点C,求证:△ADC∽△ACB;
(2)如果把直线CD向下平行移动,如图2,直线CD交⊙O于C、G两点,若题目中的其他条件不变,tan∠DAC=![]()
,AB=10,求圆心O到GB的距离OH的长.
![]()
![]()
【考点】切线的性质;相似三角形的判定与性质.
【分析】(1)首先连接OC,由CD切⊙O于C,根据切线的性质,可得OC⊥CD,又由AD⊥CD,可得OC∥AD,又由OA=OC,易证得∠DAC=∠CAO,根据圆周角定理求得∠ACB=90°,得出∠ADC=∠ACB,即可证得结论;
(2)由于四边形ABGC为⊙O的内接四边形,根据圆的内接四边形的性质得∠B+∠ACG=180°,易得∠ACD=∠B,又∠ADC=∠AGB=90°,利用等角的余角相等得到∠DAC=∠GAB,根据tan∠DAC=![]()
=tan∠GAB=![]()
和勾股定理求得AG=8,GB=6,然后求得△ABG∽△OBH,根据相似三角形的性质求得![]()
=![]()
=![]()
,即可求得OH=4.
【解答】(1)证明:连接OC,如图1,
∵直线CD与⊙O相切于点C,
∴OC⊥CD,
∵AD⊥CD,
∴AD∥OC,
∴∠DAC=∠ACO,
∵OA=OC,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠ADC=∠ACB,
∴△ADC∽△ACB;
(2)解:如图2,∵AB是⊙O的直径,
∴∠AGB=90°,
∵四边形ABGC是⊙O的内接四边形,
∴∠ACD=∠B,
∵∠ADC=∠AGB=90°,
∴∠DAC=∠GAB,
∵tan∠DAC=![]()
=tan∠GAB=![]()
,
设GB=3x,AG=4x,
∵AB=10,
∴(3x)2+(4x)2=102,
解得x=2,
∴AG=8,GB=6,
∵OH⊥GB,AG⊥GB,
∴OH∥AG,
∴△ABG∽△OBH,
∴![]()
=![]()
=![]()
,
∴OH=4.
![]()
![]()
![]()
![]()
【点评】此题考查了切线的性质、垂径定理、等腰三角形的性质、平行线的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
科目:初中数学 来源: 题型:
体育课上,小明、小强、小华三人在学习训练踢足球,足球从一人传到另一人就记为踢一次.
(1)如果从小强开始踢,经过两次踢后,足球踢到了小华处的概率是多少(用树状图表示或列表说明);
(2)如果踢三次后,球踢到了小明处的可能性最小,应从谁开始踢?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,Rt△ABO在直角坐标系中,AB⊥x轴于点B,AO=10,sin∠AOB=![]()
,反比例函数y=![]()
(x>0)的图象经过AO的中点C,且与AB交于点D,则BD= .
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB
上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,
设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为( )
① ②
![]()
![]()
![]()
![]()
A、 B 、 C、 D、
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com