【题目】如图,在菱形ABCD中,过点A作AH⊥BC,分别交BD,BC于点E,H,F为ED的中点,∠BAF=120°,则∠C的度数为_____.
【答案】140°
【解析】
根据菱形的性质得出AD∥BC,∠ABD=∠CBD,进而利用三角形的内角和解答即可.
解:设∠CBD=x,
∵四边形ABCD为菱形,
∴AD∥BC,∠ABD=∠CBD=x,
∴∠ADB=∠CBD=x,
∵AH⊥BC,AD∥BC,
∴∠DAH=∠AHB=90°,
∵F为ED的中点.
∴AF=FD,
∴∠FAD=∠ADB=x,
∵∠BAF=120°,
∴∠BAD=120°+x,
∵AD∥BC,
∴∠BAD+∠ABC=180°,
可得:2x+120°+x=180°,
解得:x=20°,
∴∠BAD=120°+x=140°
∵四边形ABCD为菱形,
∴∠C=∠BAD=140°.
故答案为:140°.
科目:初中数学 来源: 题型:
【题目】如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=4,⊙O的半径为,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,扇形AOB的圆心角为直角,边长为1的正方形ODCF的顶点F,D,C分别在OA,OB,上,过点B作BE⊥FC,交FC的延长线于点E,则图中阴影部分的面积等于__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校某数学兴趣小组想测学校旗杆高度如图,明明在稻香园一楼点测得旗杆顶点仰角为,在稻香园二楼点测得点的仰角为.明明从点朝旗杆方向步行米到点,沿坡度的台阶走到点,再向前走米到旗杆底部,已知稻香园高度为米,则旗杆的高度约为( )(参考数据:,,)
A.米B.米C.米D.米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小魏探究学习函数的经验,对函数的图像与性质进行了研究,下面是小魏的探究过程,请补充完整.
(1)下表是与的几组对应值:
请直接写出:_______,______,_______.
(2)画出该函数图像.
(3)写出该函数的一条性质:_______________.
(4)一次函数与该函数图像至少有三个交点,则的范围_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC与△ABD中,∠DBA=∠CAB,AC与BD交于点F
(1)如图1,若∠DAF=∠CBF,求证:AD=BC;
(2)如图2,∠D=135°,∠C=45°,AD=2,AC=4,求BD的长.
(3)如图3,若∠DBA=18°,∠D=108°,∠C=72°,AD=1,直接写出DB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图像与反比例函数的图像交于点,与轴交于点,若,且.
(1)求反比例函数与一次函数的表达式;
(2)若点为轴上一点,是等腰三角形,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角∠APQ为15°,山脚B处的俯角∠BPQ为60°,已知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.
(1)求出山坡坡角(∠ABC)的大小;
(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】广州中学在“读书日”期间购进一批图书, 需要用大小两种规格的纸箱来装运.个大纸箱和个小纸箱一次可以装,本书个大纸箱和个小纸箱--次可以装本书.
(1)一个大纸箱和一个小纸箱分别可以装多少本书?
(2)如果一共购入本书,每个纸箱恰好装满,分别需要用多少个大、小纸箱?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com