【题目】如图,扇形,且,,为弧上任意一点,过点作于点,设的内心为,连接、.当点从点运动到点时,内心所经过的路径长为________.
【答案】.
【解析】
根据E为直角三角形OCD的内心,求出∠OEC=135°,连接BE,证明△OCE≌△OBE,得到∠OEB=135°,得到点E路径为以OB为弦,所对圆心角为135°的圆弧,构造⊙G,求出∠G=90°,,根据弧长公式计算即可.
解:如图,∵,
∴∠COD+∠OCD=90°,
∵E为直角三角形OCD的内心,
∴OE、CE分别平分∠COD、∠OCD,
∴∠OEC=,
连接BE,
∵OE=OE,OC=OC,∠COE=∠BOE
∴△COE≌△BOE
∴∠OEB=∠OEC=135°
∴点E的路径为以OB为弦,所对圆心角为135°的圆弧,
过点O、E、B作圆G,作圆内接四边形OEBF,则∠F=45°,
∴∠G=90°,
∵OG=OB,OB=4,
∴OG=,
∴弧OB长为:.
故答案为:
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=x+15分别交x轴、y轴于点A,B,交直线y=x于点M.动点C在直线AB上以每秒3个单位的速度从点A向终点B运动,同时,动点D以每秒a个单位的速度从点0沿OA的方向运动,当点C到达终点B时,点D同时停止运动.设运动时间为t秒.
(1)求点A的坐标和AM的长.
(2)当t=5时,线段CD交OM于点P,且PC=PD,求a的值.
(3)在点C的整个运动过程中,
①直接用含t的代数式表示点C的坐标.
②利用(2)的结论,以C为直角顶点作等腰直角△CDE(点C,D,E按逆时针顺序排列),当OM与△CDE的一边平行时,求所有满足条件的t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠A=30°,∠ACB=90°,BC=2,D是AB上的动点,将线段CD绕点C逆时针旋转90°,得到线段CE,连接BE,则BE的最小值是( )
A.-1B.C.D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,点E,F分别在AB,CD上,且,连接EF交BD于点O连接AO.若,,则的度数为( )
A.50°B.55°C.65°D.75°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“五四青年节”来临之际,某校举办了以“我的青春我做主”为主题的演讲比赛.并从参加比赛的学生中随机抽取部分学生的演讲成绩进行统计(等级记为:优秀,:良好,:一般,:较差),并制作了如下统计图表(部分信息未给出).
等级 | 人数 |
20 | |
10 |
请根据统计图表中的信息解答下列问题:
(1)这次共抽取了______名参加演讲比赛的学生,统汁图中________,_______;
(2)求扇形统计图中演讲成绩等级为“一般”所对应扇形的圆心角的度数;
(3)若该校学生共2000人,如果都参加了演讲比赛,请你估计成绩达到优秀的学生有多少人?
(4)若演讲比赛成绩为等级的学生中恰好有2名女生,其余的学生为男生,从等级的学生中抽取两名同学参加全市演讲比赛,请用列表或画树状图的方法求出“恰好抽中—名男生和一名女生”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,已知,,点是对角线上一动点(不与,重合),连接,过点作,交于点,
(1)求证:;
(2)当点是的中点时,求的值;
(3)在点运动过程中,当时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某家具生产厂生产某种配套桌椅(一张桌子,两把椅子),已知每块板材可制作桌子张或椅子把,现计划用块这种板材生产一批桌椅(不考虑板材的损耗,恰好配套),设用块板材做椅子,用块板材做桌子,则下列方程组正确的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,I是内心,AB=AC,O是AB边上一点,以点O为圆心,OB为半径的⊙O经过点I.
(1)求证:AI是⊙O的切线;
(2)如图2,连接CI交AB于点E,交⊙O于点F,若tan∠IBC=,求.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市中心城区居民用水实行以户为单位的三级阶梯收费办法:
第Ⅰ级:居民每户每月用水不超过18吨时,每吨收水费3元;
第Ⅱ级:居民每户每月用水超过18吨但不超过25吨,未超过18吨的部分按照第Ⅰ级标准收费,超过的部分每吨收水费4元;
第Ⅲ级:居民每户每月用水超过25吨,未超过25吨的部分按照第Ⅰ、Ⅱ级标准收费,超过的部分每吨收水费6元.
现把上述水费阶梯收费办法称为方案①;假设还存在方案②:居民每户月用水一律按照每吨4元的标准缴费.
设一户居民月用水x吨.
(Ⅰ)根据题意填表:
(Ⅱ)设方案①应缴水费为元,方案②应缴水费为元,分别求,关于x的函数解析式;
(Ⅲ)当时,通过计算说明居民选择哪种付费方式更合算.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com