【题目】已知抛物线y=ax2+bx+3经过A(3,0),B(1,0)两点(如图1),顶点为M.
(1)a、b的值;
(2)设抛物线与y轴的交点为Q(如图1),直线y=2x+9与直线OM交于点D. 现将抛物线平移,保持顶点在直线OD上.当抛物线的顶点平移到D点时,Q点移至N点,求抛物线上的两点M、Q间所夹的曲线MQ扫过的区域的面积;
(3)设直线y=2x+9与y轴交于点C,与直线OM交于点D(如图2).现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)没有公共点时,试探求其顶点的横坐标h的取值范围.
【答案】(1)a=1,b=4;(2)MQ扫过的面积为;(3)或
【解析】
(1)将A、B两点的坐标代入抛物线的解析式中,即可求出待定系数的值.
(2)连接MQ、DN后,由图可以发现曲线MQ扫过的面积正好是MQND的面积;连接QD,则MQND的面积是两倍的△MQD的面积,所以这道题实际求的是△MQD的面积;由(1)的抛物线解析式,不难求出顶点M的坐标,联立直线OM和直线CD的解析式可以求出点D的坐标;以OQ为底,M、D两点的横坐标差的绝对值为高即可得△MQD的面积,则此题可求.
(3)在平移过程中,抛物线的开口方向和大小是不变的,即二次项系数不变;抛物线的顶点始终在直线OM上,根据直线OM的解析式(y=x)可表达出抛物线顶点的坐标(h,h),可据此先设出平移后的抛物线解析式;若求平移的抛物线与射线CD(含端点C)没有公共点时顶点横坐标的取值范围,那么就要考虑到两个关键位置:
①抛物线对称轴右侧部分经过C点时,抛物线顶点横坐标h的值;
②抛物线对称轴左侧部分与直线CD恰好有且只有一个交点时,h的值;
解:(1)将A(-3,0),B(-1,0)代入抛物线y=ax2+bx+3中,得:
,
解得:a=1、b=4.
(2)连接MQ、QD、DN,
由图形平移的性质知:QN∥MD,即四边形MQND是平行四边形;
由(1)知,抛物线的解析式:y=x2+4x+3=(x+2)2-1,则点M(-2,-1),
当x=0时,y=3,
∴Q(0,3);
设直线OM的解析式为y=kx,
∴-2k=-1,
∴k=,
∴直线OM:y=x,联立直线y=-2x+9,得:
,
解得
.
则D();
曲线QM扫过的区域的面积:S=SMQND=2S△MQD;
(3)由于抛物线的顶点始终在y=x上,可设其坐标为(h,h),设平移后的抛物线解析式为y=(x-h)2+h;
①当平移后抛物线对称轴右侧部分经过点C(0,9)时,有:
h2+h=9,解得:h=(依题意,舍去正值)
②当平移后的抛物线与直线y=-2x+9只有一个交点时,依题意:
,
消去y,得:x2-(2h-2)x+h2+h-9=0,
则:△=(2h-2)2-4(h2+h-9)=-10h+40=0,解得:h=4,
结合图形,当平移的抛物线与射线CD(含端点C)没有公共点时,h<或h>4.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,BC=3,AC=5,点D为线段AC上一动点,将线段BD绕点D逆时针旋转90°,点B的对应点为E,连接AE,则AE长的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CECA.
(1)求证:BC=CD;
(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如果一个点能与另外两个点构成直角三角形,则称这个点为另外两个点的勾股点.如矩形OBCD中,点C为O,B两点的勾股点,已知OD=4,在DC上取点E,DE=8.
(1)如果点E是O,B两点的勾股点(点E不在点C), 试求OB的长;
(2)如果OB=12,分别以OB,OD为坐标轴建立如图2的直角坐标系,在x轴上取点F(5,0).在线段DC上取点P, 过点P的直线l∥y轴,交x轴于点Q.设DP=t.
①当点P在DE之间,以EF为直径的圆与直线l相切,试求t的值;
②当直线l上恰好有2点是E,F两点的勾股点时,试求相应t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的( )
A. 点M B. 点N C. 点P D. 点Q
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.
(1)求证:CM=CN;
(2)若△CMN的面积与△CDN的面积比为3:1,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解学生每天的睡眠情况,某初中学校从全校 800 名学生中随机抽取了 40 名学生,调查了他们平均每天的睡眠时间(单位: h) ,统计结果如下:
9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,
7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.
在对这些数据整理后,绘制了如下的统计图表:
睡眠时间分组统计表 睡眠时间分布情况
组别 | 睡眠时间分组 | 人数(频数) |
1 | 7≤t<8 | m |
2 | 8≤t<9 | 11 |
3 | 9≤t<10 | n |
4 | 10≤t<11 | 4 |
请根据以上信息,解答下列问题:
(1) m = , n = , a = , b = ;
(2)抽取的这 40 名学生平均每天睡眠时间的中位数落在 组(填组别) ;
(3)如果按照学校要求,学生平均每天的睡眠时间应不少于 9 h,请估计该校学生中睡眠时间符合要求的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将Rt△ABC平移到△A'B'C'的位置,其中∠C=90°使得点C'与△ABC的内心重合,已知AC=4,BC=3,则阴影部分的面积为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,D是⊙O上一点,DE⊥AB于点E,且∠ADE=60°,C是上一点,连结AC,CD.
(1)求∠ACD的度数;
(2)证明:AD2=ABAE;
(3)如果AB=8,∠ADC=45°,请你编制一个计算题(不标注新的字母),并直接给出答案.(根据编出的问题层次,给不同的得分)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com