【题目】学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.
(1)根据图象信息,当t= 分钟时甲乙两人相遇,甲的速度为 米/分钟,乙的速度为 米/分钟;
(2)图中点A的坐标为 ;
(3)求线段AB所直线的函数表达式;
(4)在整个过程中,何时两人相距400米?
【答案】(1)24,40,60;(2)(40,1600);(3)线段AB所表示的函数表达式为y=40x;(4)在整个过程中,第20分钟和28分钟时两人相距400米
【解析】
(1)根据图象信息,当分钟时甲乙两人相遇,甲60分钟行驶2400米,根据速度路程时间可得甲的速度,进而求出乙的速度;
(2)求出乙从图书馆回学校的时间即点的横坐标;
(3)运用待定系数法求解即可;
(4)分相遇前后两种情况解答即可.
解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40(米/分钟).
∴甲、乙两人的速度和为2400÷24=100米/分钟,
∴乙的速度为100﹣40=60(米/分钟).
故答案为:24,40,60;
(2)乙从图书馆回学校的时间为2400÷60=40(分钟),
40×40=1600,
∴A点的坐标为(40,1600).
故答案为:(40,1600);
(3)设线段AB所表示的函数表达式为y=kx+b,
∵A(40,1600),B(60,2400),
∴,解得,
∴线段AB所表示的函数表达式为y=40x;
(4)两种情况:①迎面:(2400﹣400)÷100=20(分钟),
②走过:(2400+400)÷100=28(分钟),
∴在整个过程中,第20分钟和28分钟时两人相距400米.
科目:初中数学 来源: 题型:
【题目】在如图的正方形网格中,每一个小正方形的边长为1.格点三角形 ABC (顶点是网格线交点的三角形)的顶点 A ,C 的坐标分别是(-4 ,6) ,(-1,4) .
(1)请在图中的网格平面内建立平面直角坐标系;
(2)请画出△ABC 关于 x 轴对称的△A1B1C1 ;并直接写出A1B1C1的坐标.
(3)请在 y 轴上求作一点 P ,使△PB1C 的周长最小,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是□ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.
(1)求证:△AOE≌△COF;
(2)若EF与AC垂直,试判断四边形AFCE的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】ABCD中,E是CD边上一点,
(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是 ,∠AFB=∠
(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ;
(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC内接于⊙O,过点A作直线EF.
(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种): 或者 .
(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三角形,其中,正确命题为_____(选填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2017年5月31日,昌平区举办了首届初二年级学生“数学古文化阅读展示”活动,为表彰在本次活动中表现优秀的学生,老师决定在6月1日购买笔袋或彩色铅笔作为奖品. 已知1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元.
(1)每个笔袋、每筒彩色铅笔原价各多少元?
(2)时逢“儿童节”,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠. 若买x个笔袋需要y1元,买x筒彩色铅笔需要y2元. 请用含x的代数式表示y1、y2;
(3)若在(2)的条件下购买同一种奖品95件,请你分析买哪种奖品省钱.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,BE 平分∠ABC,DE∥BC.
(1)判断△DBE 是什么三角形,并说明理由;
(2)若 F 为 BE 中点,∠ABC=58°,试说明 DF⊥BE,并求∠EDF 的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com