【题目】如图所示,一块等腰直角三角形铁板,通过切割焊接成一个含有45°角的平行四边形,设计一种简要的方案并给出正确的理由.
【答案】解:如图,取AC、BC的中点E、D,连接ED,沿ED切割,固定点E,△ECD旋转180°使C点与A点重合即可.
理由:在Rt△ABC中,
∵AC=BC,∠B=45°,
又∵E、D分别是AC、BC的中点,
∴EC=DC
∴∠CED=∠CDE=45°
∴∠AEF=∠CED=45°
∴∠AEF+∠AED=∠CED+∠AED=180°
∴F、E、D在一条直线上.
又∵∠EAF=∠C=90°
∴AF∥CD.
又∵AF=CD=DB,
∴四边形AFDB是平行四边形,且∠B=45°
【解析】∵这是一块等腰直角三角形铁板,已经包含45°的角.∴应用到题中45°的角,利用全等进行割补,应遵循简单易行的原则.
【考点精析】掌握等腰直角三角形和平行四边形的判定与性质是解答本题的根本,需要知道等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积.
科目:初中数学 来源: 题型:
【题目】如图,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°.求:∠DCE和∠DCA的度数.
请将以下解答补充完整,
解:因为∠DAB+∠D=180°
所以DC∥AB()
所以∠DCE=∠B()
又因为∠B=95°,
所以∠DCE=°;
因为AC平分∠DAB,∠CAD=25°,根据角平分线定义,
所以∠CAB==°,
因为DC∥AB
所以∠DCA=∠CAB,()
所以∠DCA=°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l1:y=﹣x+3与直线l2:y=x+1相交于点A.并且l1交x轴于点B,l2交x轴于点C.若平面上有一点D,构成平行四边形ABDC,请写出D点坐标 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题是真命题的是( )
A. 菱形的对角线互相平分 B. 一组对边平行的四边形是平行四边形
C. 对角线互相垂直且相等的四边形是正方形 D. 对角线相等的四边形是矩形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2﹣2x与x轴正半轴相交于点A,顶点为B.
(1)用含a的式子表示点B的坐标;
(2)经过点C(0,﹣2)的直线AC与OB(O为原点)相交于点D,与抛物线的对称轴相交于点E,△OCD≌△BED,求a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com