【题目】如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是( )
A.
B.
C.
D.不确定
【答案】A
【解析】解:法1:过P点作PE⊥AC,PF⊥BD ∵矩形ABCD
∴AD⊥CD
∴△PEA∽△CDA
∴
∵AC=BD= =5
∴ …①
同理:△PFD∽△BAD
∴
∴ …②
∴①+②得:
∴PE+PF=
即点P到矩形的两条对角线AC和BD的距离之和是 .
法2:连结OP.
∵AD=4,CD=3,
∴AC= =5,
又∵矩形的对角线相等且互相平分,
∴AO=OD=2.5cm,
∴S△APO+S△POD= ×2.5PE+ ×2.5PF= ×2.5(PE+PF)= ×3×4,
∴PE+PF= .
故选:A.
【考点精析】解答此题的关键在于理解矩形的性质的相关知识,掌握矩形的四个角都是直角,矩形的对角线相等,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
科目:初中数学 来源: 题型:
【题目】图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.
(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m,n的代数式表示) 方法1:
方法2:
(2)根据(1)中结论,请你写出下列三个代数式之间的等量关系;代数式:(m+n)2 , (m﹣n)2 , mn
(3)根据(2)题中的等量关系,解决如下问题:已知a+b=8,ab=7,求a﹣b和a2﹣b2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是( )
A. 物体B. 速度C. 时间D. 空气
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是一个平行四边形,BE⊥CD于点E,BF⊥AD于点F,
(1)请用图中表示的字母表示出平行线AD与BC之间的距离;
(2)若BE=2cm,BF=4cm,求平行线AB与CD之间的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com