精英家教网 > 初中数学 > 题目详情

【题目】已知点EF分别在正方形ABCD的边BCCD上.若AF平分∠DFE,∠AFE=55°,则∠AEB的度数为(  )

A.75°B.55°C.80°D.45°

【答案】C

【解析】

AMEF,由题意可证RtABERtAEM,可得∠AEB=AEF,根据五边形内角和为540°,可求∠BEF=160°,即可求∠AEB的度数.

解:如图:作AMEF

∵四边形ABCD是正方形
AB=AD,∠D=C=B=90°=DAB
AF平分∠DFEADDCAMEF
AD=AM
AD=AMAE=AE
RtABERtAEM
∴∠AEB=AEF
∵∠AFE=55°
∴∠DFE=110°
∵∠B+D+DAB+DFE+BEF=540°
∴∠BEF=160°
∴∠AEB=80°
故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)【问题发现】

如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为   

(2)【拓展研究】

在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;

(3)【问题发现】

当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点EF在直线AB上,点G在线段CD上,EDFG交于点H,∠C=EFG,∠CED=GHD

1)求证:CEGF

2)试判断∠AED与∠D之间的数量关系,并说明理由;

3)若∠EHF=70°,∠D=30°,求∠AEM的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了尽快的适应中招体考项目,现某校初二(1)班班委会准备筹集1800元购买A、B两种类型跳绳供班级集体使用.

(1)班委会决定,购买A种跳绳的资金不少于B种跳绳资金的2倍,问最多用多少资金购买B种跳绳?

(2)经初步统计,初二(1)班有25人自愿参与购买,那么平均每生需交72元.初三(1)班了解情况后,把体考后闲置的跳绳赠送了若干给初二(1)班,这样只需班级共筹集1350元.经初二(1)班班委会进一步宣传,自愿参与购买的学生在25人的基础上增加了4a%.则每生平均交费在72元基础上减少了2.5a%,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程(m+1)x2+2mx+(m﹣3)=0有实数根.

(1)求m的取值范围;

(2)m为何值时,方程有两个相等的实数根?并求出这两个实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AM∥BN,∠A=52°,点P是射线AM上的动点(与点A不重合),BC、BD分别平分∠ABP∠PBN,分别交射线AM于点C,D.

(1)求∠CBD的度数;

(2)当点P运动时,∠APB∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由,若变化,请写出变化规律;

(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABCD,对角线ACBD相较于点O,要使ABCD为矩形,需添加下列的一个条件是  

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.

(1)求一次函数的解析式

(2)判断点C(4,-2)是否在该一次函数的图象上,说明理由

(3)若该一次函数的图象与x轴交于D点,求BOD的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(﹣15),B(﹣10),C(﹣43).

1)在图中的点上标出相应字母ABC,并求出ABC的面积;

2)在图中作出ABC关于y轴的对称图形A1B1C1

3)写出点A1B1C1的坐标.

查看答案和解析>>

同步练习册答案