精英家教网 > 初中数学 > 题目详情

【题目】已知等腰直角和等腰直角如图放置,,其中,在一条直线上,连接并延长交

(1)求证:

(2)有什么位置关系?请说明理由.

(3)有什么数量关系?请说明理由.

【答案】1)见解析;(2BFAC,理由见解析;(3BF2AE,理由见解析.

【解析】

1)利用SAS定理证明△BDF≌△ADC,根据全等三角形的性质证明结论;

2)根据全等三角形的性质得到∠DBF=∠DAC,得到∠BEA90°即可证明;

3)根据等腰三角形的三线合一得到AEAC,结合(1)中结论证明即可.

解答:(1)证明:

在△BDF和△ADC中,

∴△BDF≌△ADCSAS

BFAC

2BFAC

理由:∵△BDF≌△ADC

∴∠DBF=∠DAC

∵∠DBF+∠DFB90°,∠DFB=∠EFA

∴∠EFA+∠DAC90°,

∴∠BEA90°,

BFAC

3)若ABBCBF2AE

理由:∵ABBCBFAC

AEAC

BFAC

BF2AE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究由数思形,以形助数的方法在解决代数问题中的应用.

探究一:求不等式|x1|2的解集

1)探究|x1|的几何意义

如图①,在以O为原点的数轴上,设点A对应的数是x1,有绝对值的定义可知,点A与点O的距离为

|x1|,可记为AO=|x1|.将线段AO向右平移1个单位得到线段AB,此时点A对应的数是x,点B对应的数是1.因为AB=AO,所以AB=|x1|,因此,|x1|的几何意义可以理解为数轴上x所对应的点A1所对应的点B之间的距离AB

2)求方程|x1|=2的解

因为数轴上3和﹣1所对应的点与1所对应的点之间的距离都为2,所以方程的解为3,﹣1

3)求不等式|x1|2的解集

因为|x1|表示数轴上x所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x的范围.请写出这个解集:_________________________________

探究二:探究的几何意义

1)探究的几何意义

如图③,在直角坐标系中,设点M的坐标为(xy),过MMPx轴于P,作MQy轴于Q,则P点坐标为(x0),Q点坐标为(0y),OP=|x|OQ=|y|,在RtOPM中,PM=OQ=|y|,则,因此,的几何意义可以理解为点Mxy)与点O00)之间的距离MO

2)探究的几何意义

如图④,在直角坐标系中,设点A的坐标为(x1y5),由探究二(1)可知,,将线段AO先向右平移1个单位,再向上平移5个单位,得到线段AB,此时点A的坐标为(xy),点B的坐标为(15),因为AB=AO,所以,因此的几何意义可以理解为点Axy)与点B15)之间的距离AB

3)探究的几何意义,根据探究二(2)所得的结论,请写出的几何意义可以理解为:________________

4的几何意义可以理解为:________________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形纸片ABCD中,AB=6,BC=10,点ECD上,将BCE沿BE折叠,点C恰落在边AD上的点F处;点GAF上,将ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:

①∠EBG=45°;DEF∽△ABG;SABG=SFGHAG+DF=FG.

其中正确的是__.(把所有正确结论的序号都选上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD绕点A按逆时针方向旋转,得到矩形AEFG,E点正好落在边CD上,连接BE,BG,且BGAEP.

1)求证:CBE=BAE

(2)求证:PG=PB;

3)若AB=BC=3求出BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线ACBD交于点O,过点O的直线EFAD于点E,交BC于点F

1)求证:AOE≌△COF

2)若∠EOD=30°,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,∠C=120°AD=4AB=2,点HG分别是边CDBC上的动点.连接AHHG,点EAH的中点,点FGH的中点,连接EFEF的最大值与最小值的差为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,点是线段上一点(不与端点重合),分别平分于点.

1)请说明:

2)当点上移动时,请写出之间满足的数量关系为______

3)若,则当点移动到使得时,请直接写出______(用含的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,MN是⊙O的直径,MN=2a,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则 PA+PB的最小值为_____.(用含a的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】说明:在解答“结论应用”时,从(A),(B)两题中仸选一题做答

问题探究

启知学习小组在课外学习时,发现了这样一个问题:如图(1),在四边形ABCD中,连接ACBD,如果ABC与BCD的面积相等,那么ADBC在小组交流时,他们在图(1)中添加了如图所示的辅助线,AEBC于点EDFBC于点F请你完成他们的证明过程

结论应用

在平面直角坐标系中,反比例函数的图象经过A(1,4),B(ab两点,过点AACx轴于点C,过点BBDy轴于点D

(A)(1)求反比例函数的表达式;

(2)如图(2),已知b=1AC,BD相交于点E,求证:CDAB

(B)(1)求反比例函数的表达式;

(2)如图(3),若点B在第三象限,判断并证明CD与AB的位置关系

我选择:

查看答案和解析>>

同步练习册答案