【题目】如图,△ABC是等边三角形,D、E分别是BC、AC上的点,BD=CE,求∠AFE的度数.
科目:初中数学 来源: 题型:
【题目】近年来,我国逐步完善养老金保险制度,甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则选项图象能大致反映y与x的函数关系的是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数,它的图象与轴交于点,与轴交于点.
点的坐标为________,点的坐标为________;
画出此函数图象;
画出该函数图象向下平移个单位长度后得到的图象;
写出一次函数图象向下平移个单位长度后所得图象对应的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知BD,CE是△ABC的两条高,直线BD,CE相交于点H.
(1)若∠BAC=100°,求∠DHE的度数;
(2)若△ABC中∠BAC=50°,直接写出∠DHE的度数是____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点P为AB边上任一点,过P分别作PE⊥AC于E,PF⊥BC于F,则线段EF的最小值是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,P是AD上一动点,O为BD的中点,连接PO并延长,交BC于点Q.
(1) 求证:四边形PBQD是平行四边形
(2) 若AD=6cm,AB=4cm, 点P从点A出发,以1cm/s的速度向点D运动(不与点D重合),设点P运动时间为t s , 请用含t的代数式表示PD的长,并求出当t为何值时,四边形PBQD是菱形。并求出此时菱形的周长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A到图形G的距离跨度为R=D﹣d.
(1)①如图1,在平面直角坐标系xOy中,图形G1为以O为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度: A(1,0)的距离跨度;
B(﹣ , )的距离跨度;
C(﹣3,﹣2)的距离跨度;
②根据①中的结果,猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是 .
(2)如图2,在平面直角坐标系xOy中,图形G2为以D(﹣1,0)为圆心,2为半径的圆,直线y=k(x﹣1)上存在到G2的距离跨度为2的点,求k的取值范围.
(3)如图3,在平面直角坐标系xOy中,射线OP:y= x(x≥0),⊙E是以3为半径的圆,且圆心E在x轴上运动,若射线OP上存在点到⊙E的距离跨度为2,直接写出圆心E的横坐标xE的取值范围 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列叙述中正确的是( )
A. 直角三角形中,两条边的平方和等于第三边的平方
B. 若三角形三个内角度数之比为3:4:5,则该三角形是直角三角形
C. 在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,若,则∠B=90°
D. △ABC的三边为a、b、c,且满足 ,则△ABC是直角三角形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com