精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,P是AD上一动点,O为BD的中点,连接PO并延长,交BC于点Q.

(1) 求证:四边形PBQD是平行四边形

(2) 若AD=6cm,AB=4cm, 点P从点A出发,以1cm/s的速度向点D运动(不与点D重合),设点P运动时间为t s , 请用含t的代数式表示PD的长,并求出当t为何值时,四边形PBQD是菱形。并求出此时菱形的周长。

【答案】(1)证明见解析;(2)

【解析】(1) ∵四边形ABCD是矩形

∴AD ∥BC

∴∠PDO=∠QBO (1分)

∵O是BD的中点,∴OB=OD

∵∠POD=∠QOB

∴△POD≌△QOB (2分)

∴ OP=OQ ∴四边形PBQD是平行四边形 (2分)

(2)依题意得,AP=tcm, 则PD=(6-t) cm (1分)

当四边形PBQD是菱形时,有PB=PD=(6-t) cm (1分)

∵四边形ABCD是矩形

∴∠A=90°

在Rt△ABP中, AB=4

解得 (3分)

所以运动的时间为时,四边形PBQD是菱形。(1分)

∴此时菱形的周长为(cm)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列命题中真命题的个数(  )

(1)已知直角三角形面积为4,两直角边的比为1:2,则它的斜边为5;

(2)直角三角形的最大边长为26,最短边长为10,则另一边长为24;

(3)在直角三角形中,两条直角边长为n2﹣12n,则斜边长为n2+1;

(4)等腰三角形面积为12,底边上的底为4,则腰长为5.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知二次函数y=x2+bx+c的图象与x 轴交于A(﹣1,0)、B(3,0)两点,与y 轴交于点C,顶点为D,对称轴为直线l.

(1)求该二次函数的表达式;
(2)若点E 是对称轴l 右侧抛物线上一点,且SADE=2SAOC , 求点E 的坐标;
(3)如图2,连接DC 并延长交x 轴于点F,设P 为线段BF 上一动点(不与B、F 重合),过点P 作PQ∥BD 交直线BC 于点Q,将直线PQ 绕点P 沿顺时针方向旋转45°后,所得的直线交DF 于点R,连接QR.请直接写出当△PQR 与△PFR 相似时点P 的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,D、E分别是BC、AC上的点,BD=CE,求∠AFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.
(1)填空:点A坐标为;抛物线的解析式为
(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?

(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校组织同学到离校15千米的社会实践基地开展活动.一部分同学骑自行车前往,另一部分同学在骑自行车的同学出发 小时后,乘汽车沿相同路线行进,结果骑自行车的与乘汽车的同学同时到达目的地.已知汽车速度是自行车速度的3倍,求自行车的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,BP、CP分别是∠ABC和∠ACB的角平分线,∠BPC=134°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题

土特产种类

每辆汽车运载量(吨)

8

6

5

每吨土特产获利(百元)

12

16

10

(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式

(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案

(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将ADE折叠使点D恰好落在BC边上的点F,求CE的长.

查看答案和解析>>

同步练习册答案