【题目】我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A到图形G的距离跨度为R=D﹣d.
(1)①如图1,在平面直角坐标系xOy中,图形G1为以O为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度: A(1,0)的距离跨度;
B(﹣ , )的距离跨度;
C(﹣3,﹣2)的距离跨度;
②根据①中的结果,猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是 .
(2)如图2,在平面直角坐标系xOy中,图形G2为以D(﹣1,0)为圆心,2为半径的圆,直线y=k(x﹣1)上存在到G2的距离跨度为2的点,求k的取值范围.
(3)如图3,在平面直角坐标系xOy中,射线OP:y= x(x≥0),⊙E是以3为半径的圆,且圆心E在x轴上运动,若射线OP上存在点到⊙E的距离跨度为2,直接写出圆心E的横坐标xE的取值范围 .
【答案】
(1)2;2;4;圆
(2)解:设直线y=k(x+1)上存在到G2的距离跨度为2的点P(m,k(m+1)),
∴OP= ,
由(1)②知,圆内一点到图形圆的跨度是此点到圆心距离的2倍,圆外一点到图形圆的跨度是此圆的直径,
∵图形G2为以C(1,0)为圆心,2为半径的圆,到G2的距离跨度为2的点,
∴距离跨度小于图形G2的圆的直径4,
∴点P在图形G2⊙C内部,
∴R=2OP=2 ,
∵直线y=k(x+1)上存在到G2的距离跨度为2的点P,
∴2 =2,
∴(k2+1)m2+2(k2﹣1)m+k2=0①,
∵存在点P,
∴方程①有实数根,
∴△=4(k2﹣1)2﹣4×(k2+1)k2=﹣12k2+4≥0,
∴﹣ ≤k≤ .
(3)﹣1≤xE≤2
【解析】解:(1)①∵图形G1为以O为圆心,2为半径的圆, ∴直径为4,
∵A(1,0),OA=1,
∴点A到⊙O的最小距离d=1,
点A到⊙O的最大距离D=3,
∴点A到图形G1的距离跨度R=D﹣d=3﹣1=2;
∵B(﹣ , ),
∴OB= =1,
∴点B到⊙O的最小距离d=BG=OG﹣OB=1,
点B到⊙O的最大距离D=BF=FO+OB=2+1=3,
∴点B到图形G1的距离跨度R=D﹣d=3﹣1=2;
∵C(﹣3,﹣2),
∴OC= = ,
∴点C到⊙O的最小距离d=CD=OC﹣OD= ﹣2,
点C到⊙O的最大距离D=CE=OC+OE=2+ ,
∴点C到图形G1的距离跨度R=D﹣d=2+ ﹣( ﹣2)=4;
所以答案是2,2,4.②a、设⊙O内一点P的坐标为(x,y),
∴OP= ,
∴点P到⊙O的最小距离d=2﹣OP,点P到⊙O的最大距离D=2+OP,
∴点P到图形G1的距离跨度R=D﹣d=2+OP﹣(2﹣OP)=2OP;
∵图形G1的距离跨度为2,
∴2OP=2,
∴OP=1,
∴ =1,
∴x2+y2=1,
即:到图形G1的距离跨度为2的所有的点组成的图形的形状是以点O为圆心,1为半径的圆.
b、设⊙O外一点Q的坐标为(x,y),
∴OQ= ,
∴点Q到⊙O的最小距离d=OQ﹣2,点P到⊙O的最大距离D=OQ+2,
∴点P到图形G1的距离跨度R=D﹣d=OQ+2﹣(OQ﹣2)=4;
∵图形G1的距离跨度为2,
∴此种情况不存在,
所以,到图形G1的距离跨度为2的所有的点组成的图形的形状是以点O为圆心,1为半径的圆.
所以答案是:圆;(3)如图,作EC⊥OP于C,交⊙E于D、H.
由题意:⊙E是以3为半径的圆,且圆心E在x轴上运动,若射线OP上存在点到⊙E的距离跨度为2,此时以E为圆心1为半径的圆与射线OP相切,当以E为圆心1为半径的圆与射线OP有交点时,满足条件,
∴CD=2,CH=4,CE=1,
∵射线OP的解析式为y= ,
∴∠COE=30°,OE=2CE=2,
当E′(﹣1,0)时,点O到⊙E的距离跨度为2,
观察图象可知,满足条件的圆心E的横坐标xE的取值范围:﹣1≤xE≤2.
所以答案是:﹣1≤xE≤2.
科目:初中数学 来源: 题型:
【题目】如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,将△APB绕点B逆时针旋转一定角度后,可得到△CQB.
(1)求点P与点Q之间的距离;
(2)求∠APB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校组织同学到离校15千米的社会实践基地开展活动.一部分同学骑自行车前往,另一部分同学在骑自行车的同学出发 小时后,乘汽车沿相同路线行进,结果骑自行车的与乘汽车的同学同时到达目的地.已知汽车速度是自行车速度的3倍,求自行车的速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题
土特产种类 | 甲 | 乙 | 丙 |
每辆汽车运载量(吨) | 8 | 6 | 5 |
每吨土特产获利(百元) | 12 | 16 | 10 |
(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式;
(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”.例如,点P(1,4)的“3级关联点”为Q(3×1+4,1+3×4),即Q(7,13).
(1)已知点A(﹣2,6)的“级关联点”是点A1,点B的“2级关联点”是B1(3,3),求点A1和点B的坐标;
(2)已知点M(m﹣1,2m)的“﹣3级关联点”M′位于y轴上,求M′的坐标;
(3)已知点C(﹣1,3),D(4,3),点N(x,y)和它的“n级关联点”N′都位于线段CD上,请直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论是 . (写出正确命题的序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com