精英家教网 > 初中数学 > 题目详情

【题目】如图,AB∥CD,点 E、F 分别在 AB、CD 上,连接 EF.∠AEF、∠CF的平分线交于点 G,∠BEF、∠DFE 的平分线交于点 H.求证:四边形 EGFH 是矩形.

【答案】见解析

【解析】

利用角平分线的定义结合平行线的性质得出∠FEH+EFH=90°,进而得出∠

EHF=90°,同法可得∠EGF=90°,再证明∠GEH=90°,进而求出四边形 EGFH 是矩形;

证明:∵EH 平分∠BEF,

FH 平分∠DFE,

ABCD,

∴∠BEF+DFE=180°,

∵∠FEH+EFH+EHF=180°,

∴∠EHF=180°﹣(FEH+EFH)=180°﹣90°=90°,

同理可得:∠EGF=90°,

EG 平分∠AEF,

EH 平分∠BEF,

∵点 A、E、B 在同一条直线上,

∴∠AEB=180°,

即∠AEF+BEF=180°,

即∠GEH=90°

∴四边形 EGFH 是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的小正方形组成的网格中,ABC的三个顶点均在格点上,请按要求完成下列各题:

1)画线段ADBC且使AD=BC,连接CD

2)线段AC的长为   CD的长为   AD的长为_____

3ACD   三角形,四边形ABCD的面积为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中(AD>AB),点EBC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是(  )

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线yx+4与x轴、y轴分别交于点A和点B,点CD分别为线段ABOB的中点,点POA上一动点,PCPD值最小时点P的坐标为.

A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“”方向排列,如根据这个规律,第2019个点的坐标为___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC中,AC=BC,以BC为直径的⊙OAB于点D,过点DDE⊥AC于点E,交BC的延长线于点F

求证:

1AD=BD

2DF⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为a为15米),围成中间隔有一道篱笆的长方形花圃。

①如果要围成面积为45平方米的花圃,AB的长是多少米?

②能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,利用关于坐标轴对称的点的坐标特点

(1)关于轴对称的图形

(2)写出关于轴的对称点的坐标;

(3)直接写出的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.

(1)求证:四边形ABEF是平行四边形;

(2)∠ABC为多少度时,四边形ABEF为矩形?请说明理由.

查看答案和解析>>

同步练习册答案