【题目】在平面直角坐标系中,已知抛物线和直线l:y=kx+b,点A(-3,-3),B(1,-1)均在直线l上.
(1)若抛物线C与直线l有交点,求a的取值范围;
(2)当a=-1,二次函数的自变量x满足m≤x≤m+2时,函数y的最大值为-4,求m的值;
(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.
【答案】(1)a≤且a≠0;(2)m=-3或m=3;(3)或a≤-2;
【解析】
(1)点,代入,求出;联立与,则有,即可求解;
(2)根据题意可得,,当时,有,或;①在左侧,随的增大而增大,时,有最大值,;
②在对称轴右侧,随最大而减小,时,有最大值;
(3)①时,时,,即;
②时,时,,即,直线的解析式为,抛物线与直线联立:,,则,即可求的范围.
解:(1)点,代入,
,
,
;
联立与,则有,
抛物线与直线有交点,
,
a≤且a≠0;
(2)根据题意可得,,
,
抛物线开口向下,对称轴,
时,有最大值,
∴当时,有,
或,
①在左侧,随的增大而增大,
时,有最大值,
;
②在对称轴右侧,随最大而减小,
时,有最大值;
综上所述:m=-3或m=3;
(3)①时,时,,
即;
②时,时,,
即,
直线的解析式为,
抛物线与直线联立:,
,
,
,
的取值范围为或a≤-2.
科目:初中数学 来源: 题型:
【题目】已知函数y=+b(a、b为常数且a≠0)中,当x=2时,y=4;当x=﹣1时,y=1.请对该函数及其图象进行如下探究:
(1)求该函数的解析式,并直接写出该函数自变量x的取值范围;
(2)请在下列直角坐标系中画出该函数的图象;
(3)请你在上方直角坐标系中画出函数y=2x的图象,结合上述函数的图象,写出不等式+b≤2x的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数图象的顶点坐标为,与坐标轴交于B、C、D三点,且B点的坐标为.
(1)求二次函数的解析式;
(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;
(3)当矩形MNHG的周长最大时,能否在二次函数图象上找到一点P,使的面积是矩形MNHG面积的?若存在,求出该点的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解九年级学生的体育达标情况,随机抽取名九年级学生进行体育达标项目测试,测试成绩如下表,请根据表中的信息,解答下列问题:
(1)该校九年级有名学生,估计体育测试成绩为分的学生人数;
(2)该校体育老师要对本次抽测成绩为分的甲、乙、丙、丁名学生进行分组强化训练,要求两人一组,求甲和乙恰好分在同一组的概率.(用列表或树状图方法解答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.
(1)填空:样本容量为 ,a= ;
(2)把频数分布直方图补充完整;
(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】天门山索道是世界最长的高山客运索道,位于张家界天门山景区.在一次检修维护中,检修人员从索道A处开始,沿A﹣B﹣C路线对索道进行检修维护.如图:已知米,米,AB与水平线的夹角是,BC与水平线的夹角是.求:本次检修中,检修人员上升的垂直高度是多少米?(结果精确到1米,参考数据:)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是( )
A. PA=PBB. ∠BPD=∠APDC. AB⊥PDD. AB平分PD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为( )
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在Rt△ACB中,∠C=90°,BC=3cm,AC=3cm,点P由B点出发沿BA方向向点A匀速运动,速度为2cm/s;点Q由A点出发沿AC方向向点C匀速运动,速度为cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:
(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;
(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;
(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com