精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,已知抛物线和直线l:y=kx+b,点A(-3,-3)B(1,-1)均在直线l上.

1)若抛物线C与直线l有交点,求a的取值范围;

2)当a=-1,二次函数的自变量x满足m≤x≤m+2时,函数y的最大值为-4,求m的值;

3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.

【答案】1a≤a≠0;(2m=-3m=3;(3a≤-2

【解析】

1)点代入,求出;联立,则有即可求解;

2)根据题意可得,,当时,有;①在左侧,的增大而增大,时,有最大值

②在对称轴右侧,最大而减小,时,有最大值

3)①时,时,,即

时,时,,即,直线的解析式为,抛物线与直线联立:,则,即可求的范围.

解:(1)点代入

联立,则有

抛物线与直线有交点,

a≤a≠0

2)根据题意可得,

抛物线开口向下,对称轴

时,有最大值,

∴当时,有

①在左侧,的增大而增大,

时,有最大值

②在对称轴右侧,最大而减小,

时,有最大值

综上所述:m=-3m=3

3)①时,时,

时,时,

直线的解析式为

抛物线与直线联立:

的取值范围为a≤-2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知函数y+bab为常数且a≠0)中,当x2时,y4;当x=﹣1时,y1.请对该函数及其图象进行如下探究:

1)求该函数的解析式,并直接写出该函数自变量x的取值范围;

2)请在下列直角坐标系中画出该函数的图象;

3)请你在上方直角坐标系中画出函数y2x的图象,结合上述函数的图象,写出不等式+b≤2x的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数图象的顶点坐标为,与坐标轴交于BCD三点,且B点的坐标为

1)求二次函数的解析式;

2)在二次函数图象位于x轴上方部分有两个动点MN,且点N在点M的左侧,过MNx轴的垂线交x轴于点GH两点,当四边形MNHG为矩形时,求该矩形周长的最大值;

3)当矩形MNHG的周长最大时,能否在二次函数图象上找到一点P,使的面积是矩形MNHG面积的?若存在,求出该点的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解九年级学生的体育达标情况,随机抽取名九年级学生进行体育达标项目测试,测试成绩如下表,请根据表中的信息,解答下列问题:

1)该校九年级有名学生,估计体育测试成绩为分的学生人数;

2)该校体育老师要对本次抽测成绩为分的甲、乙、丙、丁名学生进行分组强化训练,要求两人一组,求甲和乙恰好分在同一组的概率.(用列表或树状图方法解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.

1)填空:样本容量为   a   

2)把频数分布直方图补充完整;

3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】天门山索道是世界最长的高山客运索道,位于张家界天门山景区.在一次检修维护中,检修人员从索道A处开始,沿ABC路线对索道进行检修维护.如图:已知米,米,AB与水平线的夹角是BC与水平线的夹角是.求:本次检修中,检修人员上升的垂直高度是多少米?(结果精确到1米,参考数据:)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PAPB为圆O的切线,切点分别为ABPOAB于点CPO的延长线交圆O于点D,下列结论不一定成立的是( )

A. PAPBB. ∠BPD=∠APDC. AB⊥PDD. AB平分PD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4542,各基地之间的距离之比abcde23433(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在RtACB中,∠C=90°BC=3cmAC=3cm,点PB点出发沿BA方向向点A匀速运动,速度为2cm/s;点QA点出发沿AC方向向点C匀速运动,速度为cm/s;若设运动的时间为t(s)(0t3),解答下列问题:

(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;

(2)如图②,当点PQ运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;

(3)如图③,当点PQ运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.

查看答案和解析>>

同步练习册答案