【题目】如图,在中,已知,,
(1)画的垂直平分线交、于点、(保留作图痕迹,作图痕迹请加黑描重);
(2)求的度数;
(3)若,求的长度.
【答案】(1)见解析;(2)∠A=30°;(3)AD=2cm.
【解析】
(1)如图,利用基本作图作DE垂直平分AB;
(2)利用等腰三角形的性质和三角形内角和计算∠A的度数;
(3)连接BD,如图,根据线段垂直平分线的性质得到DA=DB,则∠ABD=∠A=30°,所以∠CBD=90°,则CD=2BD=2AD,然后利用AC=6cm可计算出AD的长.
解:(1)如图,DE为所作;
(2)∵AB=BC,
∴∠A=∠C=(180°∠ABC)=(180°120°)=30°;
(3)连接BD,如图,
∵DE垂直平分AB,
∴DA=DB,
∴∠ABD=∠A=30°,
∴∠CBD=90°,而∠C=30°,
∴CD=2BD,
∴CD=2AD,
∵AC=6cm,即AD+CD=6cm,
∴AD+2AD=6cm,
∴AD=2cm.
科目:初中数学 来源: 题型:
【题目】⑴ 阅读理解
问题1:已知a、b、c、d为正数,,ac=bd,试说明a=d,b=c.
我们通过构造几何模型解决代数问题. 注意到条件,如果把a、b、c、d分别看作为两个直角三角形的直角边,那么可构造图1所示的几何模型.
∵ac=bd,
∴AB·CD=BC·AD
∴
请你按照以上思路继续完成说明.
⑵ 深入探究
问题2:若a>0,b>0,试比较和的大小.
为此我们构造图2所示的几何模型,其中AB为直径, O为圆心,点C在半圆上,CD⊥AB 于D,AD=a,BD=b.
请你利用图2所示的几何模型解决提出的问题2.
⑶ 拓展运用
对于函数y=x+,求当x>0时,求y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(模型建立)
(1)如图1,等腰直角三角形中,,,直线经过点,过作于点,过作于点.求证:;
(模型应用)
(2)已知直线:与坐标轴交于点、,将直线绕点逆时针旋转至直线,如图2,求直线的函数表达式;
(3)如图3,长方形,为坐标原点,点的坐标为,点、分别在坐标轴上,点是线段上的动点,点是直线上的动点且在第四象限.若是以点为直角顶点的等腰直角三角形,请直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一副直角三角形的直角顶点C叠放一起
(1)如图1,若CE恰好是∠ACD的角平分线,请你猜想此时CD是不是的∠ECB的角平分线?并简述理由;
(2)如图1,若∠ECD=α,CD在∠ECB的内部,请猜想∠ACE与∠DCB是否相等?并简述理由;
(3)在如图2的条件下,请问∠ECD与∠ACB的和是多少?并简述理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:∠BAC的平分线与BC的垂直平分线DG相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC=3,则BE=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正确的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com