精英家教网 > 初中数学 > 题目详情

【题目】关于x的二次函数x轴有交点.若关于x的一元二次方程的两根分别是

1)求二次函数的解析式;

2)设A(a,c)Bb,c)是抛物线上两点,且AB=4,a<b,求abc的值.

【答案】(1);(2a=-4,b=0,c=-3

【解析】

1)将 代入中可求得mn的值,再代入原二次函数即可得出答案;

2)根据AB=4,a<b,可得出,那么,则点A(a,c) Ba+4,c,AB两点代入函数即可得出ac的值,根据可得出b的值.

解:(1)∵的两根分别是

∴代入可得:

解得:,

∴二次函数解析式为:.

2)∵AB=4a<b,且AB两点纵坐标相等,

A(a,c) Bb,c),

A(a,c) Ba+4,c

AB代入函数可得:

解得:

.

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.

(1)求证:ADE≌△ABF;

(2)填空:ABF可以由ADE绕旋转中心    点,按顺时针方向旋转    度得到;

(3)若BC=8,DE=6,求AEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,点DAB上的一点,连接CDCEABBECD,且CE=AD.

(1)求证:四边形BDCE是菱形;

(2)过点EEFBD,垂足为点F,若点FBD的中点,EB=6,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yax2+bx+5x轴交于A(﹣10),B50)两点(点A在点B的左侧),与y轴交于点C

1)求抛物线的解析式;

2)点D是第一象限内抛物线上的一个动点(与点CB不重合),过点DDFx轴于点F,交直线BC于点E,连接BD,直线BC能否把△BDF分成面积之比为23的两部分?若能,请求出点D的坐标;若不能,请说明理由.

3)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是抛物线y=x2﹣4x+3上的一点,以点P为圆心、1个单位长度为半径作⊙P,当⊙P与直线y=0相切时,点P的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电子厂商投产一种新型电子产品,每件制造成本为10元,试销过程中发现,每月销售量(万件)与销售单价(元)之间的关系可以近似地看作一次函数,且当时,;当时,.

1)求出销售量(万件)与销售单价(元)之间的函数关系式;

2)若每月的利润为(万元),求出利润(万元)与销售单价(元)的函数关系式?当销售单价为多少元时,厂商每月能获得的利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形中,,点从点出发,以每秒的速度沿折线方向运动,点从点出发,以每秒的速度沿线段方向向点运动、已知动点同时出发,当点运动到点时,点停止运动,设运动时间为秒,在这个运动过程中,若的面积为,则满足条件的的值有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场将每件进价为80元的A商品按每件100元出售,一天可售出128件.经过市场调查,发现这种商品的销售单价每降低1元,其日销量可增加8件.设该商品每件降价x元,商场一天可通过A商品获利润y元.

(1)求y与x之间的函数解析式(不必写出自变量x的取值范围)

(2)A商品销售单价为多少时,该商场每天通过A商品所获的利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程.

1)证明该方程一定有两个不相等的实数根;

2)设该方程两根为x1x2x1<x2.

①当时,试确定y值的范围;

②如图,平面直角坐标系中有三点ABC,坐标分别为(x1,0)、(x2,3)、(70.以点C为圆心,2个单位长度为半径的圆与直线AB相切,求n的值.

查看答案和解析>>

同步练习册答案