【题目】如图,直线y=ax+b交x轴于点A,交y轴于点B,且a,b满足a=+4,直线y=kx﹣4k过定点C,点D为直线y=kx﹣4k上一点,∠DAB=45°.
(1)a= ,b= ,C坐标为 ;
(2)如图1,k=﹣1时,求点D的坐标;
(3)如图2,在(2)的条件下,点M是直线y=kx﹣4k上一点,连接AM,将AM绕A顺时针旋转90°得AQ,OQ最小值为 .
【答案】(1)4;4;(4,0);(2)D(,);(3)2.
【解析】
(1)根据二次根式有意义的条件分别求出a、b,根据一次函数图象上点的坐标特征求出点C的坐标
(2)分D在线段BC上、D在线段CB的延长线上两种情况,证明△AOB≌△BFE,根据全等三角形的性质、一次函数的性质计算;
(3)证明△ANM≌△QHA,得到MN=AH=-m+4,AN=QH=m+1,根据勾股定理、二次根式的性质解答即可.
解:(1)∵4-b≥0,b-4≥0,
∴b=4,
则a=4,
对于直线y=kx-4k,当y=0时,x=4,
∴点C的坐标为(4,0),
故答案为:4;4;(4,0);
(2)当D在线段BC上时,作BE⊥BA交AD的延长线于点E,作EF⊥y轴于F,
则∠BEF+∠EBO=90°,∠ABO+∠EBO=90°,
∴∠BEF=∠ABO,
∵∠DAB=45°,
∴BA=BE,
在△AOB和△BFE中,
,
∴△AOB≌△BFE(AAS),
∴BF=OA,EF=OB=4,
对于直线y=4x+4,当y=0时,x=-1,
∴OA=1,
∴E(4,3)
设直线AE解析式为y=mx+n,
,
解得,,
则直线AE解析式为y=x+,
,
解得, ,
∴D(,);
当D在CB延长线上时,同理可得D();
(3)设M(m,-m+4),
由(2)可得,△ANM≌△QHA,
∴MN=AH=-m+4,AN=QH=m+1,
∴Q(-m+3,-m-1)
当m=1时,OQ最小为2,
故答案为:2.
科目:初中数学 来源: 题型:
【题目】如图,点P是正方形ABCD的对角线BD上一点(点P不与点B、D重合),PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②AP⊥EF;③仅有当∠DAP=45°或67.5°时,△APD是等腰三角形;④∠PFE=∠BAP:⑤PD=EC.其中有正确有( )个.
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,长方形纸片ABCD的长AD=9cm,宽AB=3cm,将其折叠,使点D与点B重合.
求:(1)折叠后DE的长;(2)以折痕EF为边的正方形面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,有下列结论: ①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣ ,0);⑤am2+bm+a≥0,其中所有正确的结论是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是( )
A.AB=DC,AD=BCB.AB∥DC,AD∥BC
C.AB∥DC,AD=BCD.OA=OC,OB=OD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知 、 是关于 的方程 的两个不相等的实数根.
(1)求实数 的取值范围;
(2)已知等腰 的一边长为7,若 、 恰好是 另外两边长,求这个三角形的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知 AB∥CD,BE∥FG.
(1)如果∠1=53°,求∠2和∠3的度数;
(2)本题隐含着一个规律,请你根据(1)的结果进行归纳,如果一个角的两边分别平行于另一个角的两边,那么这两个角__________;
(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一个角比另一个角的 2倍小 30°,求这两个角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家之一,2011年春季以来,我省遭受了严重的旱情,某校为了组织“节约用水从我做起”活动,随机调查了本校120名同学家庭月人均用水量和节水措施情况,如图1、图2是根据调查结果做出的统计图的一部分.
请根据信息解答下列问题:
(1)图1中淘米水浇花所占的百分比为 ;
(2)图1中安装节水设备所在的扇形的圆心角度数为 ;
(3)补全图2;
(4)如果全校学生家庭总人数为3000人,根据这120名同学家庭月人均用水量,估计全校学生家庭月用水总量是多少吨?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com