精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,有下列结论: ①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣ ,0);⑤am2+bm+a≥0,其中所有正确的结论是

【答案】②④⑤
【解析】解:由图象可知,抛物线开口向上,则a>0, 顶点在y轴右侧,则b<0,
抛物线与y轴交于负半轴,则c<0,
∴abc>0,故①错误;
∵抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,
∴抛物线y=ax2+bx+c过点(3,0),
∴当x=3时,y=9a+3b+c=0,
∵a>0,
∴10a+3b+c>0,故②正确;
∵对称轴为x=1,且开口向上,
∴离对称轴水平距离越大,函数值越大,
∴y1<y2 , 故③错误;
当x=﹣ 时,y=a(﹣ 2+b(﹣ )+c= =
∵当x=﹣1时,y=a﹣b+c=0,
∴当x=﹣ 时,y=a(﹣ 2+b(﹣ )+c=0,
即无论a,b,c取何值,抛物线都经过同一个点(﹣ ,0),故④正确;
x=m对应的函数值为y=am2+bm+c,
x=1对应的函数值为y=a+b+c,
又∵x=1时函数取得最小值,
∴am2+bm+c≥a+b+c,即am2+bm≥a+b,
∵b=﹣2a,
∴am2+bm+a≥0,故⑤正确;
所以答案是:②④⑤.
【考点精析】解答此题的关键在于理解二次函数图象以及系数a、b、c的关系的相关知识,掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的四个顶点分别在四条平行线 上,这四条直线中相邻两条之间的距离依次为 >0, >0, >0).

(1)求证: =
(2)设正方形ABCD的面积为S,求证:S=
(3)若 ,当 变化时,说明正方形ABCD的面积S随 的变化情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线相交于点0AC2BD.将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的面积是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣ ,y1),(﹣ ,y2),(﹣ ,y3)是该抛物线上的点,则y1<y2<y3 , 正确的个数有(
A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,函数y2xy=﹣x的图象分别为直线l1l2,过点(10)作x轴的垂线交l1于点A1,过点A1y轴的垂线交l2于点A2,过点A2x轴的垂线交l1于点A3,过点A3y轴的垂线交l2于点A4,依次进行下去,则点A2019的坐标为(  )

A.2100921010B.(﹣2100921010

C.21009,﹣21010D.(﹣21009,﹣21010

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yax+bx轴于点A,交y轴于点B,且ab满足a+4,直线ykx4k过定点C,点D为直线ykx4k上一点,∠DAB45°

1a   b   C坐标为   

2)如图1k=﹣1时,求点D的坐标;

3)如图2,在(2)的条件下,点M是直线ykx4k上一点,连接AM,将AMA顺时针旋转90°AQOQ最小值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】河大附中初一年级有350名同学去春游,已知2A型车和1B型车可以载学生100人;1A型车和2B型车可以载学生110人.

1AB型车每辆可分别载学生多少人?

2)若租一辆A需要100元,一辆B120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,Am0),Bn0),C(﹣12),且满足式|m+2|+m+n220

1)求出mn的值.

2)①在x轴的正半轴上存在一点M,使COM的面积等于ABC的面积的一半,求出点M的坐标;

②在坐标轴的其它位置是否存在点M,使COM的面积等于ABC的面积的一半仍然成立,若存在,请直接在所给的横线上写出符合条件的点M的坐标;

3)如图2,过点CCDy轴交y轴于点D,点P为线段CD延长线上一动点,连接OPOE平分∠AOPOFOE,当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数 分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.

(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.

查看答案和解析>>

同步练习册答案